LCOV - code coverage report
Current view: top level - lib_rend - ivas_reverb_fx.c (source / functions) Hit Total Coverage
Test: Coverage on main @ da9cc8ead0679b4682d329fdff98cf1616159273 Lines: 998 1086 91.9 %
Date: 2025-10-13 22:24:20 Functions: 35 35 100.0 %

          Line data    Source code
       1             : /******************************************************************************************************
       2             : 
       3             :    (C) 2022-2025 IVAS codec Public Collaboration with portions copyright Dolby International AB, Ericsson AB,
       4             :    Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Huawei Technologies Co. LTD.,
       5             :    Koninklijke Philips N.V., Nippon Telegraph and Telephone Corporation, Nokia Technologies Oy, Orange,
       6             :    Panasonic Holdings Corporation, Qualcomm Technologies, Inc., VoiceAge Corporation, and other
       7             :    contributors to this repository. All Rights Reserved.
       8             : 
       9             :    This software is protected by copyright law and by international treaties.
      10             :    The IVAS codec Public Collaboration consisting of Dolby International AB, Ericsson AB,
      11             :    Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Huawei Technologies Co. LTD.,
      12             :    Koninklijke Philips N.V., Nippon Telegraph and Telephone Corporation, Nokia Technologies Oy, Orange,
      13             :    Panasonic Holdings Corporation, Qualcomm Technologies, Inc., VoiceAge Corporation, and other
      14             :    contributors to this repository retain full ownership rights in their respective contributions in
      15             :    the software. This notice grants no license of any kind, including but not limited to patent
      16             :    license, nor is any license granted by implication, estoppel or otherwise.
      17             : 
      18             :    Contributors are required to enter into the IVAS codec Public Collaboration agreement before making
      19             :    contributions.
      20             : 
      21             :    This software is provided "AS IS", without any express or implied warranties. The software is in the
      22             :    development stage. It is intended exclusively for experts who have experience with such software and
      23             :    solely for the purpose of inspection. All implied warranties of non-infringement, merchantability
      24             :    and fitness for a particular purpose are hereby disclaimed and excluded.
      25             : 
      26             :    Any dispute, controversy or claim arising under or in relation to providing this software shall be
      27             :    submitted to and settled by the final, binding jurisdiction of the courts of Munich, Germany in
      28             :    accordance with the laws of the Federal Republic of Germany excluding its conflict of law rules and
      29             :    the United Nations Convention on Contracts on the International Sales of Goods.
      30             : 
      31             : *******************************************************************************************************/
      32             : 
      33             : #include <stdint.h>
      34             : #include "options.h"
      35             : #include "prot_fx.h"
      36             : #include "ivas_prot_rend_fx.h"
      37             : #include "ivas_cnst.h"
      38             : #include "math.h"
      39             : #include "ivas_rom_rend.h"
      40             : #include <assert.h>
      41             : #include "wmc_auto.h"
      42             : #include "debug.h"
      43             : 
      44             : 
      45             : /* The reverberator structure implemented here is described in detail in:
      46             :  * Vilkamo, J., Neugebauer, B., & Plogsties, J. (2012). Sparse frequency-domain reverberator.
      47             :  * Journal of the Audio Engineering Society, 59(12), 936-943. */
      48             : 
      49             : /*-------------------------------------------------------------------------
      50             :  * Local constants
      51             :  *------------------------------------------------------------------------*/
      52             : 
      53             : #define BIN_REND_RANDOM_SEED 1 /* random seed for generating reverb decorrelators */
      54             : 
      55             : #define CLDFB_SLOTS_PER_SECOND 800 /* Used for initializing reverb */
      56             : 
      57             : #define REV_TIME_THRESHOLD               ( 13421773 )   /* 0.2f in Q26 */
      58             : #define Q26_REV_TIME_THRESHOLD_TIMES_0_5 ( 6710886 )    /* 0.2 * 0.5 in Q26 */
      59             : #define Q29_0_5_PER_REV_TIME_THRESHOLD   ( 1342177280 ) /* 0.2 / 0.5 in Q29 */
      60             : 
      61             : #define INNER_BLK_SIZE 80 /* size of data blocks used for more efficient delay line and IIR filter processing */
      62             : /* should be a divisor of the frame length at any sampling rate and an even number*/
      63             : #define FFT_FILTER_WND_FLAT_REGION_FX  ( 26214 ) /*Q16 flat section (==1) length of FFT filter window, in proportion to overlap */
      64             : #define FFT_FILTER_WND_TRANS_REGION_FX ( 9830 )  /*Q16 transition (1->0) length of FFT filter window, in proportion to overlap */
      65             : 
      66             : #define REF_LF_MIN_FX ( 100 )
      67             : #define REF_LF_MAX_FX ( 250 )
      68             : #define REF_HF_MIN_FX ( 5000 )
      69             : #define REF_HF_MAX_FX ( 7950 )
      70             : 
      71             : #define DMX_GAIN                        ( 1410542208 )
      72             : #define IVAS_REVERB_FFT_SIZE_48K        ( 512 )
      73             : #define IVAS_REVERB_FFT_SIZE_32K        ( 512 )
      74             : #define IVAS_REVERB_FFT_SIZE_16K        ( 256 )
      75             : #define IVAS_REVERB_FFT_N_SUBBLOCKS_48K ( 1 )
      76             : #define IVAS_REVERB_FFT_N_SUBBLOCKS_32K ( 1 )
      77             : #define IVAS_REVERB_FFT_N_SUBBLOCKS_16K ( 1 )
      78             : 
      79             : #define MAX_NR_OUTPUTS ( 2 )
      80             : 
      81             : #ifdef FIX_1942_ASSERTION_LOWSHELF
      82             : #define M60Q9  ( -30720 ) //-60 in Q9
      83             : #define M120Q8 ( -30720 ) //-120 in Q8
      84             : #endif
      85             : 
      86             : static const Word16 init_loop_delay[IVAS_REV_MAX_NR_BRANCHES] = { 37, 31, 29, 23, 19, 17, 13, 11 };
      87             : static const Word16 default_loop_delay_48k[IVAS_REV_MAX_NR_BRANCHES] = { 2309, 1861, 1523, 1259, 1069, 919, 809, 719 };
      88             : static const Word16 default_loop_delay_32k[IVAS_REV_MAX_NR_BRANCHES] = { 1531, 1237, 1013, 839, 709, 613, 541, 479 };
      89             : static const Word16 default_loop_delay_16k[IVAS_REV_MAX_NR_BRANCHES] = { 769, 619, 509, 421, 353, 307, 269, 239 };
      90             : 
      91             : 
      92             : /*------------------------------------------------------------------------------------------*
      93             :  * Local Struct definition
      94             :  *------------------------------------------------------------------------------------------*/
      95             : 
      96             : typedef struct ivas_reverb_params_t
      97             : {
      98             :     Word16 pre_delay;                                                                                        /* Delay of the FDC reverb, first peak after pre_delay samples. Note that               */
      99             :                                                                                                              /*       there may be non-zero samples earlier due to the filters being                 */
     100             :                                                                                                              /*       linear-phase.                                                                  */
     101             :     Word16 nr_loops;                                                                                         /* Number of feedback loops (= L)                                                       */
     102             :     Word16 pLoop_delays[IVAS_REV_MAX_NR_BRANCHES];                                                           /* Delay for each feedback loop in samples.                                             */
     103             :     Word32 pLoop_feedback_matrix_fx[IVAS_REV_MAX_NR_BRANCHES * IVAS_REV_MAX_NR_BRANCHES];                    /* Feedback [L][L] matrix that mixes the signals of the loops.                          */
     104             :     Word16 nr_outputs;                                                                                       /* Nr of signals extracted from the loops (= S).                                        */
     105             :                                                                                                              /*       Currently this is fixed to 2.                                                  */
     106             :     Word16 pLoop_extract_matrix_fx[MAX_NR_OUTPUTS * IVAS_REV_MAX_NR_BRANCHES];                               /* Mix [S][L] matrix from feedback loops to outputs.                                    */
     107             :                                                                                                              /* In Matlab: [S x L] - Currently S=2, later may be more than 2 for speaker playback.   */
     108             :     Word16 t60_filter_order;                                                                                 /* Filter order (length of vector)                                                      */
     109             :     Word16 pT60_filter_coeff_fx[MAX_NR_OUTPUTS * IVAS_REV_MAX_NR_BRANCHES * IVAS_REV_MAX_IIR_FILTER_LENGTH]; /* Filters [][] in feedback loops, controlling T60.                                     */
     110             :     /* In Matlab: IIR: [(2 * L) x (<order> + 1)] (odd: b-vector, even: a-vector)            */
     111             :     /* In Matlab: FIR: [L       x <order>]                                                  */
     112             :     Word32 *pFc_fx;                                     /* Center frequencies for FFT filter design                                             */
     113             :     Word32 *pRt60_fx;                                   /* RT60 values at these frequencies                                                     */
     114             :     Word16 *pRt60_e;                                    /* exponents for RT60 values at these frequencies                                                     */
     115             :     Word32 *pDsr_fx;                                    /* DSR values at these frequencies                                                      */
     116             :     Word16 *pDsr_e;                                     /* DSR values at these frequencies                                                      */
     117             :     const Word32 *pHrtf_avg_pwr_response_l_const_fx;    /* The HRTF set's average left  ear power response                                      */
     118             :     const Word32 *pHrtf_avg_pwr_response_r_const_fx;    /* The HRTF set's average right ear power response                                      */
     119             :     const Word32 *pHrtf_inter_aural_coherence_const_fx; /* The HRTF set's inter-aural coherence for diffuse sound                               */
     120             : 
     121             :     Word16 do_corr_filter; /* Flag indicating whether correlation filters should be used.                          */
     122             :                            /*        Correlation only supported and needed for binaural playback (i.e.             */
     123             :                            /*        when nr_outputs != 2 correlation filtering is never supported).               */
     124             : } ivas_reverb_params_t;
     125             : 
     126             : 
     127             : /*------------------------------------------------------------------------------------------*
     128             :  * Static functions declarations
     129             :  *------------------------------------------------------------------------------------------*/
     130             : 
     131             : static ivas_error calc_jot_t60_coeffs_fx( Word16 *pH_dB_fx, Word16 pH_dB_exp, const UWord16 nrFrequencies, Word16 *pFrequencies_fx, Word16 *pCoeffA_fx, Word16 *pCoeffB_fx, const Word16 fNyquist_fx );
     132             : 
     133             : 
     134             : /*-------------------------------------------------------------------------
     135             :  * wrap_rad_fixed()
     136             :  *
     137             :  *
     138             :  *------------------------------------------------------------------------*/
     139             : 
     140        2767 : static Word16 wrap_rad_fixed(
     141             :     Word32 angle /* Q13 */ )
     142             : {
     143        2767 :     Word32 L_tmp = angle;
     144        2767 :     move32();
     145             : 
     146             :     /* Wrap azimuth value */
     147        6965 :     WHILE( GT_32( L_tmp, EVS_PI_FX ) )
     148             :     {
     149        4198 :         L_tmp = L_sub( L_tmp, EVS_2PI_FX );
     150             :     }
     151        2767 :     WHILE( LE_32( L_tmp, -EVS_PI_FX ) )
     152             :     {
     153           0 :         L_tmp = L_add( L_tmp, EVS_2PI_FX );
     154             :     }
     155             : 
     156        2767 :     return extract_l( L_tmp );
     157             : }
     158             : 
     159             : 
     160             : /*-------------------------------------------------------------------------
     161             :  * binRend_rand()
     162             :  *
     163             :  *
     164             :  *------------------------------------------------------------------------*/
     165             : 
     166     3498537 : static UWord16 binRend_rand(
     167             :     REVERB_STRUCT_HANDLE hReverb /* i/o: binaural reverb handle          */
     168             : )
     169             : {
     170     3498537 :     hReverb->binRend_RandNext = hReverb->binRend_RandNext * 1103515245 + 12345;
     171             : 
     172     3498537 :     return (UWord16) ( hReverb->binRend_RandNext / 65536 ) % 32768;
     173             : }
     174             : 
     175             : 
     176             : /*-------------------------------------------------------------------------
     177             :  * ivas_binaural_reverb_setPreDelay()
     178             :  *
     179             :  *
     180             :  *------------------------------------------------------------------------*/
     181             : 
     182         477 : static void ivas_binaural_reverb_setPreDelay_fx(
     183             :     REVERB_STRUCT_HANDLE hReverb, /* i/o: binaural reverb handle          */
     184             :     const Word16 delaySamples     /* i  : reverb pre-delay in CLDFB slots */
     185             : )
     186             : {
     187         477 :     IF( LT_16( delaySamples, 1 ) )
     188             :     {
     189           0 :         hReverb->preDelayBufferLength = 1;
     190           0 :         move16();
     191             : 
     192           0 :         return;
     193             :     }
     194             : 
     195         477 :     IF( GT_16( delaySamples, REVERB_PREDELAY_MAX ) )
     196             :     {
     197           4 :         hReverb->preDelayBufferLength = REVERB_PREDELAY_MAX;
     198           4 :         move16();
     199             : 
     200           4 :         return;
     201             :     }
     202             : 
     203         473 :     hReverb->preDelayBufferLength = delaySamples;
     204         473 :     move16();
     205             : 
     206         473 :     return;
     207             : }
     208             : 
     209             : 
     210             : /*-------------------------------------------------------------------------
     211             :  * ivas_binaural_reverb_setReverbTimes()
     212             :  *
     213             :  *
     214             :  *------------------------------------------------------------------------*/
     215             : 
     216         477 : static void ivas_binaural_reverb_setReverbTimes_fx(
     217             :     REVERB_STRUCT_HANDLE hReverb, /* i/o: binaural reverb handle                                  */
     218             :     const Word32 output_Fs,       /* i  : sampling_rate                                           */
     219             :     const Word32 *revTimes_fx,    /*Q26 i  : reverberation times T60 for each CLDFB bin in seconds   */
     220             :     const Word32 *revEnes_fx      /*Q31 i  : spectrum for reverberated sound at each CLDFB bin       */
     221             : )
     222             : {
     223             :     Word16 bin, ch, tap, sample;
     224             :     Word32 binCenterFreq_fx, diffuseFieldICC_fx, tmpVal_fx, attenuationFactorPerSample_fx, L_tmp;
     225             :     Word32 intendedEnergy_fx, actualizedEnergy_fx, energyBuildup_fx, currentEnergy_fx, attenuationFactorPerSampleSq_fx;
     226             :     Word16 tmp, tmp_exp, scale, tmpVal_exp, attenuationFactorPerSample_exp, attenuationFactorPerSampleSq_exp, energyBuildup_exp, currentEnergy_exp, intendedEnergy_exp, actualizedEnergy_exp;
     227             :     Word16 sine_inp, norm, div_exp1, div1, sine, binCenterFreq_exp;
     228         477 :     Word16 reverb_exp = 0;
     229         477 :     move16();
     230             : 
     231         477 :     hReverb->binRend_RandNext = (UWord16) BIN_REND_RANDOM_SEED;
     232         477 :     move16();
     233         477 :     hReverb->highestBinauralCoherenceBin = 0;
     234         477 :     move16();
     235             : 
     236       20747 :     FOR( bin = 0; bin < hReverb->numBins; bin++ )
     237             :     {
     238             :         /* Determine the diffuse field binaural coherence */
     239             :         Word16 exp;
     240       20270 :         tmp_exp = BASOP_Util_Add_MantExp( bin, 15, 1, 14, &tmp );
     241       20270 :         tmp = BASOP_Util_Divide3232_Scale( L_deposit_h( tmp ), L_deposit_h( hReverb->numBins ), &exp );
     242       20270 :         exp = add( exp, sub( tmp_exp, 15 ) );
     243       20270 :         L_tmp = Mpy_32_16_1( output_Fs, tmp ); /*- exp */
     244       20270 :         binCenterFreq_exp = add( 31, exp );
     245       20270 :         binCenterFreq_fx = L_shr( L_tmp, 1 ); // divide by 2
     246       20270 :         norm = norm_l( binCenterFreq_fx );
     247       20270 :         binCenterFreq_fx = L_shl( binCenterFreq_fx, norm );
     248       20270 :         binCenterFreq_exp = sub( binCenterFreq_exp, norm );
     249       20270 :         IF( bin == 0 )
     250             :         {
     251         477 :             diffuseFieldICC_fx = ONE_IN_Q31;
     252         477 :             move32();
     253             :         }
     254       19793 :         ELSE IF( EQ_16( BASOP_Util_Cmp_Mant32Exp( binCenterFreq_fx, binCenterFreq_exp, 2700, 31 ), -1 ) )
     255             :         {
     256             :             /* binCenterFreq / 550.0f */
     257        2767 :             L_tmp = Mpy_32_32( binCenterFreq_fx, 3904516 /* 1 / 550 in Q31 */ );
     258        2767 :             norm = norm_l( L_tmp );
     259        2767 :             tmp = extract_h( L_shl( L_tmp, norm ) );
     260        2767 :             tmp = add( mult( EVS_PI_FX, tmp ), EPSILLON_FX ); // to avoid divide by 0 issue
     261        2767 :             tmp_exp = sub( add( binCenterFreq_exp, 2 ), norm );
     262             : 
     263        2767 :             sine_inp = wrap_rad_fixed( L_shl( tmp, sub( tmp_exp, 2 ) ) ); // Q13
     264             : 
     265        2767 :             sine = getSinWord16( sine_inp ); // Q15
     266        2767 :             div1 = BASOP_Util_Divide1616_Scale( sine, tmp, &scale );
     267        2767 :             div_exp1 = add( scale, sub( 0, tmp_exp ) );
     268        2767 :             div1 = shl( div1, div_exp1 ); /* Q15 */
     269             : 
     270             :             /* binCenterFreq / 2700.0f */
     271        2767 :             L_tmp = Mpy_32_32( binCenterFreq_fx, 795364 /* 1 / 2700 in Q31 */ );
     272        2767 :             L_tmp = L_shl( L_tmp, binCenterFreq_exp ); /* Q31 */
     273             :             /* ( 1.0f - binCenterFreq / 2700.0f ) */
     274        2767 :             L_tmp = L_sub( ONE_IN_Q31, L_tmp ); /* Q31 */
     275             : 
     276        2767 :             diffuseFieldICC_fx = Mpy_32_16_1( L_tmp, div1 ); /* Q31 */
     277             : 
     278        2767 :             hReverb->highestBinauralCoherenceBin = bin;
     279        2767 :             move16();
     280             :         }
     281             :         ELSE
     282             :         {
     283             : 
     284       17026 :             diffuseFieldICC_fx = 0;
     285       17026 :             move32();
     286             :         }
     287             : 
     288             :         /* Mixing gains to generate a diffuse-binaural sound based on incoherent sound */
     289             :         /* tmpVal = ( 1.0f - sqrtf( 1.0f - powf( diffuseFieldICC, 2.0 ) ) ) / 2.0f; */
     290       20270 :         L_tmp = Mpy_32_32( diffuseFieldICC_fx, diffuseFieldICC_fx ); // square
     291       20270 :         L_tmp = L_sub( ONE_IN_Q31, L_tmp );
     292       20270 :         scale = 0;
     293       20270 :         L_tmp = Sqrt32( L_tmp, &scale );
     294       20270 :         L_tmp = L_shl( L_tmp, scale ); /* Q31 */
     295       20270 :         tmpVal_fx = L_shr( L_sub( ONE_IN_Q31, L_tmp ), 1 );
     296       20270 :         tmpVal_exp = 0;
     297       20270 :         move16();
     298             : 
     299       20270 :         IF( diffuseFieldICC_fx > 0 )
     300             :         {
     301        1431 :             exp = tmpVal_exp;
     302        1431 :             move16();
     303        1431 :             L_tmp = Sqrt32( L_abs( tmpVal_fx ), &exp );
     304        1431 :             hReverb->binauralCoherenceCrossmixGains_fx[bin] = L_shl( L_tmp, exp ); // Q31
     305             :         }
     306             :         ELSE
     307             :         {
     308       18839 :             exp = tmpVal_exp;
     309       18839 :             move16();
     310       18839 :             L_tmp = Sqrt32( L_abs( tmpVal_fx ), &exp );
     311       18839 :             hReverb->binauralCoherenceCrossmixGains_fx[bin] = L_negate( L_shl( L_tmp, exp ) ); // Q31
     312             :         }
     313             : 
     314             :         /* hReverb->binauralCoherenceDirectGains[bin] = sqrtf( 1.0f - fabsf( tmpVal ) ); */
     315       20270 :         exp = tmpVal_exp;
     316       20270 :         move16();
     317       20270 :         L_tmp = L_sub( ONE_IN_Q31, L_abs( tmpVal_fx ) );
     318       20270 :         L_tmp = Sqrt32( L_abs( L_tmp ), &exp );
     319       20270 :         hReverb->binauralCoherenceDirectGains_fx[bin] = L_shl( L_tmp, exp ); // making as Q31
     320             : 
     321             :         /* Determine attenuation factor that generates the appropriate energy decay according to reverberation time */
     322       20270 :         L_tmp = Mpy_32_32( 1677721600, revTimes_fx[bin] ); // e10 --> 800 * 2^21, + e0
     323       20270 :         tmp = BASOP_Util_Divide3232_Scale( 1073741824, L_tmp, &scale );
     324       20270 :         scale = add( scale, sub( 1, 15 ) );      // revTimes_fx in Q26
     325       20270 :         L_tmp = Mpy_32_16_1( -1610612736, tmp ); // * -3
     326       20270 :         scale = add( 2, scale );
     327       20270 :         L_tmp = Mpy_32_32( 1783446563, L_tmp ); // scale + 2
     328       20270 :         attenuationFactorPerSample_fx = BASOP_util_Pow2( L_tmp, add( scale, 2 ), &attenuationFactorPerSample_exp );
     329             : 
     330             :         Word32 tmp_mul;
     331       20270 :         scale = norm_l( hReverb->loopBufLength[bin] );
     332       20270 :         tmp_mul = L_shl( hReverb->loopBufLength[bin], scale );
     333       20270 :         L_tmp = BASOP_Util_Log2( attenuationFactorPerSample_fx );                     // Q25
     334       20270 :         L_tmp = L_add( L_tmp, L_shl( (Word32) attenuationFactorPerSample_exp, 25 ) ); // Q25
     335       20270 :         L_tmp = Mpy_32_32( L_tmp, tmp_mul );
     336       20270 :         L_tmp = BASOP_util_Pow2( L_tmp, sub( 6 + 31, scale ), &exp );
     337       20270 :         hReverb->loopAttenuationFactor_fx[bin] = L_shl( L_tmp, exp ); // making as Q31
     338             : 
     339       20270 :         attenuationFactorPerSampleSq_fx = Mpy_32_32( attenuationFactorPerSample_fx, attenuationFactorPerSample_fx );
     340       20270 :         attenuationFactorPerSampleSq_exp = attenuationFactorPerSample_exp + attenuationFactorPerSample_exp;
     341             : 
     342             :         /* Design sparse decorrelation filters. The decorrelation filters, due to random procedures involved,
     343             :          * may affect the spectrum of the output. The spectral effect is therefore monitored and compensated for. */
     344       20270 :         intendedEnergy_fx = 0;
     345       20270 :         move32();
     346       20270 :         intendedEnergy_exp = 0;
     347       20270 :         move16();
     348       20270 :         actualizedEnergy_fx = 0;
     349       20270 :         move32();
     350       20270 :         actualizedEnergy_exp = 0;
     351       20270 :         move16();
     352             : 
     353       60810 :         FOR( ch = 0; ch < BINAURAL_CHANNELS; ch++ )
     354             :         {
     355       40540 :             energyBuildup_fx = 0;
     356       40540 :             move32();
     357       40540 :             energyBuildup_exp = 0;
     358       40540 :             move16();
     359       40540 :             currentEnergy_fx = ONE_IN_Q30;
     360       40540 :             move32();
     361       40540 :             currentEnergy_exp = 1;
     362       40540 :             move16();
     363             : 
     364       40540 :             tap = 0;
     365       40540 :             move16();
     366             : 
     367     2574672 :             FOR( sample = 0; sample < hReverb->loopBufLength[bin]; sample++ )
     368             :             {
     369     2534132 :                 intendedEnergy_fx = BASOP_Util_Add_Mant32Exp( intendedEnergy_fx, intendedEnergy_exp, currentEnergy_fx, currentEnergy_exp, &intendedEnergy_exp );
     370             :                 /* The randomization at the energy build up affects where the sparse taps are located */
     371             : 
     372     2534132 :                 UWord16 ret_binRend = binRend_rand( hReverb );
     373             : 
     374     2534132 :                 tmp = BASOP_Util_Divide3232_Scale( ret_binRend, PCM16_TO_FLT_FAC_FX, &tmp_exp );
     375     2534132 :                 L_tmp = BASOP_Util_Add_Mant32Exp( L_deposit_h( tmp ), tmp_exp, L_negate( 1073741824 ), 0, &exp );
     376     2534132 :                 L_tmp = Mpy_32_32( L_tmp, 214748364 ); // exp + 0
     377     2534132 :                 L_tmp = BASOP_Util_Add_Mant32Exp( L_tmp, exp, currentEnergy_fx, currentEnergy_exp, &exp );
     378     2534132 :                 energyBuildup_fx = BASOP_Util_Add_Mant32Exp( energyBuildup_fx, energyBuildup_exp, L_tmp, exp, &energyBuildup_exp );
     379     2534132 :                 IF( energyBuildup_fx >= 0 ) /* A new filter tap is added at this condition */
     380             :                 {
     381     2533720 :                     IF( ( BASOP_Util_Cmp_Mant32Exp( energyBuildup_fx, energyBuildup_exp, 1, 31 ) > 0 ) )
     382             :                     {
     383             :                         /* Four efficient phase operations: n*pi/2, n=0,1,2,3 */
     384      964405 :                         hReverb->tapPhaseShiftType[bin][ch][tap] = (Word16) ( binRend_rand( hReverb ) % 4 );
     385      964405 :                         move16();
     386             :                         /* Set the tapPointer to point to the determined sample at the loop buffer */
     387             : 
     388      964405 :                         hReverb->tapPointersReal_fx[bin][ch][tap] = &( hReverb->loopBufReal_fx[bin][sample] );
     389      964405 :                         hReverb->tapPointersImag_fx[bin][ch][tap] = &( hReverb->loopBufImag_fx[bin][sample] );
     390             : 
     391      964405 :                         energyBuildup_fx = BASOP_Util_Add_Mant32Exp( energyBuildup_fx, energyBuildup_exp, L_negate( 1073741824 ), 1, &energyBuildup_exp ); /* A tap is added, thus remove its energy from the buildup */
     392             : 
     393      964405 :                         tap = add( tap, 1 );
     394             : 
     395      964405 :                         actualizedEnergy_fx = BASOP_Util_Add_Mant32Exp( actualizedEnergy_fx, actualizedEnergy_exp, 1073741824, 1, &actualizedEnergy_exp );
     396             :                     }
     397             :                 }
     398             : 
     399     2534132 :                 currentEnergy_fx = BASOP_Util_Add_Mant32Exp( currentEnergy_fx, currentEnergy_exp, 0, 0, &currentEnergy_exp );
     400     2534132 :                 currentEnergy_fx = Mpy_32_32( currentEnergy_fx, attenuationFactorPerSampleSq_fx );
     401     2534132 :                 currentEnergy_exp = currentEnergy_exp + attenuationFactorPerSampleSq_exp;
     402             :             }
     403             : 
     404             :             /* In some configurations with small T60s it is possible the number of taps randomizes to zero.
     405             :                Ensure at least 1 filter tap. */
     406       40540 :             IF( EQ_16( tap, 0 ) )
     407             :             {
     408           0 :                 hReverb->tapPhaseShiftType[bin][ch][0] = (Word16) ( binRend_rand( hReverb ) % 4 );
     409           0 :                 move16();
     410           0 :                 hReverb->tapPointersReal_fx[bin][ch][0] = &( hReverb->loopBufReal_fx[bin][0] );
     411           0 :                 hReverb->tapPointersImag_fx[bin][ch][0] = &( hReverb->loopBufImag_fx[bin][0] );
     412           0 :                 tap = 1;
     413           0 :                 move16();
     414           0 :                 actualizedEnergy_fx = ONE_IN_Q30;
     415           0 :                 move32();
     416           0 :                 actualizedEnergy_exp = 1;
     417           0 :                 move16();
     418             :             }
     419             : 
     420       40540 :             hReverb->taps[bin][ch] = tap; /* Number of taps determined at the above random procedure */
     421       40540 :             move16();
     422             :         }
     423             : 
     424             :         /* The decorrelator design and IIR attenuation rate affects the energy of reverb, which is compensated here */
     425       20270 :         reverb_exp = 0;
     426       20270 :         move16();
     427       20270 :         hReverb->reverbEqGains_fx[bin] = Sqrt32( revEnes_fx[bin], &reverb_exp ); /* Determined reverb spectrum */
     428       20270 :         move32();
     429       20270 :         hReverb->reverbEqGains_fx[bin] = BASOP_Util_Add_Mant32Exp( hReverb->reverbEqGains_fx[bin], reverb_exp, 0, 0, &reverb_exp );
     430       20270 :         move32();
     431             : 
     432       20270 :         tmp = BASOP_Util_Divide3232_Scale( intendedEnergy_fx, actualizedEnergy_fx, &tmp_exp );
     433       20270 :         tmp_exp = add( tmp_exp, sub( intendedEnergy_exp, actualizedEnergy_exp ) );
     434       20270 :         hReverb->reverbEqGains_fx[bin] = BASOP_Util_Add_Mant32Exp( hReverb->reverbEqGains_fx[bin], reverb_exp, 0, 0, &reverb_exp );
     435       20270 :         move32();
     436       20270 :         L_tmp = Sqrt32( L_deposit_h( tmp ), &tmp_exp );
     437       20270 :         hReverb->reverbEqGains_fx[bin] = Mpy_32_32( hReverb->reverbEqGains_fx[bin], L_tmp );
     438       20270 :         move32();
     439       20270 :         reverb_exp = add( reverb_exp, tmp_exp );
     440             : 
     441       20270 :         L_tmp = BASOP_Util_Add_Mant32Exp( 1073741824, 1, L_negate( attenuationFactorPerSampleSq_fx ), attenuationFactorPerSampleSq_exp, &tmp_exp );
     442       20270 :         L_tmp = Mpy_32_32( L_tmp, 1073741824 ); // tmp_exp + 1
     443       20270 :         tmp_exp = add( tmp_exp, 0 );
     444       20270 :         L_tmp = Sqrt32( L_tmp, &tmp_exp );
     445       20270 :         hReverb->reverbEqGains_fx[bin] = Mpy_32_32( L_tmp, hReverb->reverbEqGains_fx[bin] );
     446       20270 :         move32();
     447       20270 :         reverb_exp = add( reverb_exp, tmp_exp );
     448       20270 :         hReverb->reverbEqGains_fx[bin] = L_shl( hReverb->reverbEqGains_fx[bin], reverb_exp ); // making as Q31
     449       20270 :         move32();
     450             :     }
     451             : 
     452         477 :     return;
     453             : }
     454             : 
     455             : 
     456             : /*-----------------------------------------------------------------------------------------*
     457             :  * Function compute_feedback_matrix()
     458             :  *
     459             :  * Compute the N x N matrix for the mixing the N feedback loop outputs into the N inputs again
     460             :  *-----------------------------------------------------------------------------------------*/
     461             : 
     462         218 : static ivas_error compute_feedback_matrix_fx(
     463             :     Word32 *pFeedbackMatrix, // Q31
     464             :     const Word16 n )
     465             : {
     466             :     Word32 u;
     467             :     Word16 i, j, x;
     468             : 
     469         218 :     u = MATRIX_CONSTANT; // Q31
     470         218 :     move32();
     471             : 
     472         218 :     pFeedbackMatrix[0] = u;
     473         218 :     move32();
     474         872 :     FOR( x = 1; x < n; x += x )
     475             :     {
     476        2180 :         FOR( i = 0; i < x; i++ )
     477             :         {
     478        6104 :             FOR( j = 0; j < x; j++ )
     479             :             {
     480        4578 :                 pFeedbackMatrix[add( i_mult( add( i, x ), n ), j )] = pFeedbackMatrix[add( i_mult( i, n ), j )];
     481        4578 :                 move32();
     482        4578 :                 pFeedbackMatrix[i_mult( i, n ) + j + x] = pFeedbackMatrix[add( i_mult( i, n ), j )];
     483        4578 :                 move32();
     484        4578 :                 pFeedbackMatrix[add( add( i_mult( add( i, x ), n ), j ), x )] = L_negate( pFeedbackMatrix[add( i_mult( i, n ), j )] );
     485        4578 :                 move32();
     486             :             }
     487             :         }
     488             :     }
     489             : 
     490         218 :     return IVAS_ERR_OK;
     491             : }
     492             : 
     493             : 
     494             : /*-----------------------------------------------------------------------------------------*
     495             :  * Function compute_2_out_extract_matrix()
     496             :  *
     497             :  * Compute the N x 2 matrix for mixing the N Jot feedback loops to 2 outputs
     498             :  *-----------------------------------------------------------------------------------------*/
     499             : 
     500         218 : static void compute_2_out_extract_matrix_fx(
     501             :     Word16 *pExtractMatrix,
     502             :     const Word16 n )
     503             : {
     504             :     Word16 ff;
     505             :     Word16 i;
     506             : 
     507         218 :     ff = 1;
     508         218 :     move16();
     509             : 
     510        1962 :     FOR( i = 0; i < n; i++ )
     511             :     {
     512        1744 :         pExtractMatrix[i] = 1;
     513        1744 :         move16();
     514        1744 :         pExtractMatrix[add( i, n )] = ff;
     515        1744 :         move16();
     516        1744 :         ff = negate( ff );
     517             :     }
     518             : 
     519         218 :     return;
     520             : }
     521             : 
     522             : 
     523             : /*-----------------------------------------------------------------------------------------*
     524             :  * Function set_base_config()
     525             :  *
     526             :  * Set all jot reverb parameters that are independent of the input reverb configuration
     527             :  *-----------------------------------------------------------------------------------------*/
     528             : 
     529         218 : static ivas_error set_base_config_fx(
     530             :     ivas_reverb_params_t *pParams,
     531             :     const Word32 output_Fs )
     532             : {
     533             :     ivas_error error;
     534             :     Word16 loop_idx;
     535         218 :     const Word16 *selected_loop_delay = NULL;
     536             : 
     537         218 :     IF( pParams == NULL )
     538             :     {
     539           0 :         return IVAS_ERR_INTERNAL;
     540             :     }
     541             : 
     542         218 :     pParams->pre_delay = 0;
     543         218 :     move16();
     544         218 :     pParams->nr_outputs = BINAURAL_CHANNELS;
     545         218 :     move16();
     546         218 :     pParams->nr_loops = IVAS_REV_MAX_NR_BRANCHES;
     547         218 :     move16();
     548             : 
     549             :     /* set loop delays to default */
     550         218 :     IF( EQ_32( output_Fs, 48000 ) )
     551             :     {
     552         127 :         selected_loop_delay = default_loop_delay_48k; // Q0
     553             :     }
     554          91 :     ELSE IF( EQ_32( output_Fs, 32000 ) )
     555             :     {
     556          30 :         selected_loop_delay = default_loop_delay_32k; // Q0
     557             :     }
     558          61 :     ELSE IF( EQ_32( output_Fs, 16000 ) )
     559             :     {
     560          61 :         selected_loop_delay = default_loop_delay_16k; // Q0
     561             :     }
     562             : 
     563        1962 :     FOR( loop_idx = 0; loop_idx < pParams->nr_loops; loop_idx++ )
     564             :     {
     565        1744 :         pParams->pLoop_delays[loop_idx] = selected_loop_delay[loop_idx];
     566        1744 :         move16();
     567             :     }
     568             : 
     569             :     /* set feedback and output matrices */
     570         218 :     IF( NE_32( ( error = compute_feedback_matrix_fx( pParams->pLoop_feedback_matrix_fx, pParams->nr_loops ) ), IVAS_ERR_OK ) )
     571             :     {
     572           0 :         return error;
     573             :     }
     574             : 
     575         218 :     compute_2_out_extract_matrix_fx( pParams->pLoop_extract_matrix_fx, pParams->nr_loops );
     576             : 
     577             :     /* pre-set the various filters; they will be set later based on reverb configuration */
     578         218 :     pParams->t60_filter_order = 1; /* set to 1 in base config. */
     579         218 :     move16();
     580             : 
     581         218 :     IF( EQ_16( pParams->nr_outputs, 2 ) )
     582             :     {
     583         218 :         pParams->do_corr_filter = 1;
     584         218 :         move16();
     585             :     }
     586             :     ELSE
     587             :     {
     588           0 :         pParams->do_corr_filter = 0;
     589           0 :         move16();
     590             :     }
     591             : 
     592         218 :     return IVAS_ERR_OK;
     593             : }
     594             : 
     595             : 
     596             : /*-----------------------------------------------------------------------------------------*
     597             :  * Function calc_dmx_gain()
     598             :  *
     599             :  * Computes the downmix gain
     600             :  *-----------------------------------------------------------------------------------------*/
     601             : 
     602         163 : static Word32 calc_dmx_gain_fx( void )
     603             : {
     604         163 :     const Word32 gain = DMX_GAIN; // Q23
     605         163 :     move32();
     606             : 
     607         163 :     return gain;
     608             : }
     609             : 
     610             : 
     611             : /*-----------------------------------------------------------------------------------------*
     612             :  * Function calc_predelay()
     613             :  *
     614             :  * Calculate the predelay, taking shortest jot loop delay into account
     615             :  *-----------------------------------------------------------------------------------------*/
     616             : 
     617         218 : static void calc_predelay_fx(
     618             :     ivas_reverb_params_t *pParams,
     619             :     Word32 acoustic_predelay_sec,
     620             :     const Word32 output_Fs )
     621             : {
     622             :     Word16 predelay, fbdelay, output_frame;
     623             : 
     624         218 :     predelay = round_fx( L_shl( Mult_32_32( L_shl( output_Fs, 15 ), acoustic_predelay_sec ), 5 ) );
     625         218 :     output_frame = extract_l( Mult_32_16( output_Fs, INV_FRAME_PER_SEC_Q15 ) );
     626         218 :     fbdelay = pParams->pLoop_delays[sub( pParams->nr_loops, 1 )];
     627         218 :     move16();
     628         218 :     predelay = sub( predelay, fbdelay );
     629             : 
     630         218 :     if ( predelay < 0 )
     631             :     {
     632           0 :         predelay = 0;
     633           0 :         move16();
     634             :     }
     635             : 
     636         218 :     if ( LT_16( output_frame, predelay ) )
     637             :     {
     638           0 :         predelay = output_frame; // Q0
     639           0 :         move16();
     640             :     }
     641             : 
     642         218 :     pParams->pre_delay = predelay; // Q0
     643         218 :     move16();
     644             : 
     645         218 :     return;
     646             : }
     647             : 
     648             : 
     649             : /*-----------------------------------------------------------------------------------------*
     650             :  * Function compute_t60_coeffs()
     651             :  *
     652             :  * Calculate Jot reverb's T60 filter coefficients
     653             :  *-----------------------------------------------------------------------------------------*/
     654             : 
     655         218 : static ivas_error compute_t60_coeffs_fx(
     656             :     ivas_reverb_params_t *pParams,
     657             :     const Word16 nr_fc_fft_filter, /*Q0*/
     658             :     const Word32 output_Fs )
     659             : {
     660             :     Word16 bin_idx, loop_idx, tf_T60_len, len;
     661             :     ivas_error error;
     662             : #ifdef FIX_1942_ASSERTION_LOWSHELF
     663             :     Word16 loop_delay_sec_fx, tmp, tmp_e;
     664             : #else
     665             :     Word16 loop_delay_sec_fx, tmp;
     666             : #endif
     667         218 :     Word32 freq_Nyquist_fx = L_shr( output_Fs, 1 );
     668             :     Word16 target_gains_db_fx[RV_LENGTH_NR_FC]; // Q8
     669             :     Word16 norm_f_fx[RV_LENGTH_NR_FC];
     670             :     Word16 *pCoeffs_a_fx, *pCoeffs_b_fx;
     671             :     Word16 e;
     672             : #ifndef FIX_1942_ASSERTION_LOWSHELF
     673             :     const Word16 min120q8 = -30720; // -120 in Q8
     674             : #endif
     675         218 :     error = IVAS_ERR_OK;
     676         218 :     move32();
     677         218 :     tf_T60_len = nr_fc_fft_filter;
     678         218 :     move16();
     679         218 :     len = add( pParams->t60_filter_order, 1 );
     680             : 
     681       48436 :     FOR( bin_idx = 0; bin_idx < tf_T60_len; bin_idx++ )
     682             :     {
     683       48218 :         norm_f_fx[bin_idx] = BASOP_Util_Divide3232_Scale( pParams->pFc_fx[bin_idx], freq_Nyquist_fx, &e );
     684       48218 :         move16();
     685       48218 :         e = add( e, sub( 15, 31 ) );
     686       48218 :         norm_f_fx[bin_idx] = shl( norm_f_fx[bin_idx], sub( e, 1 ) ); // making Q14
     687       48218 :         move16();
     688             :     }
     689             : 
     690        1962 :     FOR( loop_idx = 0; loop_idx < pParams->nr_loops; loop_idx++ )
     691             :     {
     692        1744 :         loop_delay_sec_fx = BASOP_Util_Divide3232_Scale( pParams->pLoop_delays[loop_idx], output_Fs, &e );
     693        1744 :         loop_delay_sec_fx = shl( loop_delay_sec_fx, e ); // Q15
     694             : 
     695      387488 :         FOR( bin_idx = 0; bin_idx < tf_T60_len; bin_idx++ )
     696             :         {
     697      385744 :             IF( EQ_32( pParams->pRt60_fx[bin_idx], 0 ) )
     698             :             {
     699             :                 // If RT60 is 0, target gain is -120dB
     700             : #ifdef FIX_1942_ASSERTION_LOWSHELF
     701           0 :                 target_gains_db_fx[bin_idx] = M120Q8;
     702           0 :                 move16();
     703             : #else
     704             :                 target_gains_db_fx[bin_idx] = min120q8;
     705             : #endif
     706             :             }
     707             :             ELSE
     708             :             {
     709      385744 :                 tmp = BASOP_Util_Divide3232_Scale( L_deposit_h( loop_delay_sec_fx ), pParams->pRt60_fx[bin_idx], &e );
     710             : #ifdef FIX_1942_ASSERTION_LOWSHELF
     711      385744 :                 tmp_e = add( e, sub( 0, 5 ) ); // L_deposit_h( loop_delay_sec_fx ):Q0.31, pParams->pRt60_fx[bin_idx]:Q5.26
     712             : 
     713      385744 :                 tmp_e = add( tmp_e, 6 ); // + Q6.9(M60Q9)
     714      385744 :                 target_gains_db_fx[bin_idx] = mult( M60Q9, tmp );
     715             : 
     716             :                 // gain < - 120 ? -120: gain
     717      385744 :                 tmp_e = sub( tmp_e, 7 ); // - Q7.8(M120Q8)
     718      385744 :                 IF( GT_16( tmp_e, 0 ) )
     719             :                 {
     720           0 :                     IF( LT_16( target_gains_db_fx[bin_idx], shr( M120Q8, tmp_e ) ) )
     721             :                     {
     722           0 :                         target_gains_db_fx[bin_idx] = M120Q8; // Q8
     723           0 :                         move16();
     724             :                     }
     725             :                     ELSE
     726             :                     {
     727           0 :                         target_gains_db_fx[bin_idx] = shl_r( target_gains_db_fx[bin_idx], tmp_e ); // Q8, gain must be less than 128
     728             :                     }
     729             :                 }
     730             :                 ELSE
     731             :                 {
     732      385744 :                     target_gains_db_fx[bin_idx] = shl_r( target_gains_db_fx[bin_idx], tmp_e ); // Q8, gain must be less than 128
     733      385744 :                     IF( LT_16( target_gains_db_fx[bin_idx], M120Q8 ) )
     734             :                     {
     735           0 :                         target_gains_db_fx[bin_idx] = M120Q8; // Q8
     736           0 :                         move16();
     737             :                     }
     738             :                 }
     739             :             }
     740             : #else
     741             :                 IF( LT_16( e, -1 ) )
     742             :                 {
     743             :                     target_gains_db_fx[bin_idx] = min120q8;
     744             :                 }
     745             :                 ELSE
     746             :                 {
     747             :                     tmp = shr( tmp, sub( 5, e ) );                                 // scaling tmp to Q15
     748             :                     target_gains_db_fx[bin_idx] = mult( shr( min120q8, 1 ), tmp ); // Q8
     749             :                 }
     750             :             }
     751             :             // gain < - 120 ? -120: gain
     752             :             IF( LT_16( target_gains_db_fx[bin_idx], -30720 ) )
     753             :             {
     754             :                 target_gains_db_fx[bin_idx] = -30720;
     755             :                 move16();
     756             :             }
     757             : #endif
     758             :         }
     759             : 
     760        1744 :         pCoeffs_a_fx = &pParams->pT60_filter_coeff_fx[add( shl( i_mult( len, loop_idx ), 1 ), len )]; // Q14
     761        1744 :         pCoeffs_b_fx = &pParams->pT60_filter_coeff_fx[shl( i_mult( len, loop_idx ), 1 )];             // Q14
     762             : 
     763        1744 :         move16();
     764             : 
     765        1744 :         Word16 val = 7;
     766             : 
     767        1744 :         IF( NE_32( ( error = calc_jot_t60_coeffs_fx( target_gains_db_fx, val, tf_T60_len, norm_f_fx, pCoeffs_a_fx, pCoeffs_b_fx, extract_l( freq_Nyquist_fx ) ) ), IVAS_ERR_OK ) )
     768             :         {
     769           0 :             return error;
     770             :         }
     771             :     }
     772             : 
     773         218 :     len = shr( ( add( pParams->t60_filter_order, 1 ) ), 1 ); // Q0// /* == floor( (order+1) / 2) */
     774        1962 :     FOR( loop_idx = 0; loop_idx < pParams->nr_loops; loop_idx++ )
     775             :     {
     776        1744 :         pParams->pLoop_delays[loop_idx] = sub( pParams->pLoop_delays[loop_idx], len ); // Q0
     777        1744 :         move16();
     778             :     }
     779             : 
     780         218 :     return error;
     781             : }
     782             : 
     783             : 
     784             : /*-----------------------------------------------------------------------------------------*
     785             :  * Function calc_low_shelf_first_order_filter()
     786             :  *
     787             :  * Calculate 1st order low shelf filter
     788             :  *-----------------------------------------------------------------------------------------*/
     789             : 
     790        1744 : static void calc_low_shelf_first_order_filter_fx(
     791             :     Word16 *pNum, /* Q14 */
     792             :     Word16 *pDen, /* Q14 */
     793             :     const Word16 f0,
     794             :     const Word16 lin_gain_lf,
     795             :     const Word16 lin_gain_hf )
     796             : {
     797             :     Word16 sine_val, shift;
     798             :     Word16 cos_val, tmp, tan_val, tan_exp, gain_exp, exp, norm_num0, norm_num1, norm_den0, norm_den1;
     799             :     Word32 L_tmp;
     800             : 
     801        1744 :     tmp = mult( EVS_PI_BY_2_FX, f0 );
     802        1744 :     sine_val = getSinWord16( shl( tmp, 1 ) ); // Q15
     803             : 
     804        1744 :     tmp = mult( EVS_PI_BY_2_FX, f0 );
     805        1744 :     cos_val = getCosWord16( shl( tmp, 1 ) ); // Q14
     806             : 
     807        1744 :     tan_val = BASOP_Util_Divide1616_Scale( sine_val, cos_val, &tan_exp );
     808        1744 :     tan_exp = add( tan_exp, sub( 0, 1 ) );
     809             : 
     810             :     Word16 gain_fx;
     811        1744 :     gain_fx = BASOP_Util_Divide1616_Scale( lin_gain_lf, lin_gain_hf, &gain_exp );
     812             : 
     813        1744 :     IF( LT_16( gain_fx, 16384 ) )
     814             :     {
     815             : 
     816           7 :         tmp = mult( tan_val, gain_fx );
     817           7 :         norm_num0 = add( tan_exp, gain_exp );
     818           7 :         L_tmp = L_add( L_shl( 1, sub( 15, norm_num0 ) ), tmp );
     819           7 :         shift = norm_l( L_tmp );
     820           7 :         L_tmp = L_shl( L_tmp, shift );
     821           7 :         tmp = extract_h( L_tmp );
     822           7 :         pNum[0] = tmp;
     823           7 :         move16();
     824           7 :         norm_num0 = sub( norm_num0, sub( shift, 16 ) );
     825             : 
     826           7 :         tmp = mult( tan_val, gain_fx );
     827           7 :         norm_num1 = add( tan_exp, gain_exp );
     828           7 :         L_tmp = L_sub( tmp, L_shl( 1, sub( 15, norm_num1 ) ) );
     829           7 :         shift = norm_l( L_tmp );
     830           7 :         L_tmp = L_shl( L_tmp, shift );
     831           7 :         tmp = extract_h( L_tmp );
     832           7 :         pNum[1] = tmp;
     833           7 :         move16();
     834           7 :         norm_num1 = sub( norm_num1, sub( shift, 16 ) );
     835             : 
     836           7 :         L_tmp = L_add( L_shl( 1, sub( 15, tan_exp ) ), tan_val );
     837           7 :         shift = norm_l( L_tmp );
     838           7 :         L_tmp = L_shl( L_tmp, shift );
     839           7 :         tmp = extract_h( L_tmp );
     840           7 :         pDen[0] = tmp;
     841           7 :         move16();
     842           7 :         norm_den0 = sub( tan_exp, sub( shift, 16 ) );
     843             : 
     844           7 :         L_tmp = L_sub( tan_val, L_shl( 1, sub( 15, tan_exp ) ) );
     845           7 :         shift = norm_l( L_tmp );
     846           7 :         L_tmp = L_shl( L_tmp, shift );
     847           7 :         tmp = extract_h( L_tmp );
     848           7 :         pDen[1] = tmp;
     849           7 :         move16();
     850           7 :         norm_den1 = sub( tan_exp, sub( shift, 16 ) );
     851             :     }
     852             :     ELSE
     853             :     {
     854        1737 :         L_tmp = L_add( L_shl( 1, ( sub( 15, tan_exp ) ) ), tan_val );
     855        1737 :         shift = norm_l( L_tmp );
     856        1737 :         L_tmp = L_shl( L_tmp, shift );
     857        1737 :         tmp = extract_h( L_tmp );
     858        1737 :         pNum[0] = tmp;
     859        1737 :         move16();
     860        1737 :         norm_num0 = sub( tan_exp, sub( shift, 16 ) );
     861             : 
     862        1737 :         L_tmp = L_sub( tan_val, L_shl( 1, ( sub( 15, tan_exp ) ) ) );
     863        1737 :         shift = norm_l( L_tmp );
     864        1737 :         L_tmp = L_shl( L_tmp, shift );
     865        1737 :         tmp = extract_h( L_tmp );
     866        1737 :         pNum[1] = tmp;
     867        1737 :         move16();
     868        1737 :         norm_num1 = sub( tan_exp, sub( shift, 16 ) );
     869             : 
     870        1737 :         tmp = BASOP_Util_Divide1616_Scale( tan_val, gain_fx, &exp );
     871        1737 :         exp = add( exp, sub( tan_exp, gain_exp ) );
     872        1737 :         L_tmp = L_add( L_shl( 1, sub( 15, exp ) ), tmp );
     873        1737 :         shift = norm_l( L_tmp );
     874        1737 :         L_tmp = L_shl( L_tmp, shift );
     875        1737 :         tmp = extract_h( L_tmp );
     876        1737 :         pDen[0] = tmp;
     877        1737 :         move16();
     878        1737 :         norm_den0 = sub( exp, sub( shift, 16 ) );
     879             : 
     880        1737 :         tmp = BASOP_Util_Divide1616_Scale( tan_val, gain_fx, &exp );
     881        1737 :         exp = add( exp, sub( tan_exp, gain_exp ) );
     882        1737 :         L_tmp = L_sub( tmp, 1 * L_shl( 1, sub( 15, exp ) ) );
     883        1737 :         shift = norm_l( L_tmp );
     884        1737 :         L_tmp = L_shl( L_tmp, shift );
     885        1737 :         tmp = extract_h( L_tmp );
     886        1737 :         pDen[1] = tmp;
     887        1737 :         move16();
     888        1737 :         norm_den1 = sub( exp, sub( shift, 16 ) );
     889             :     }
     890             : 
     891             :     /* Normalize and adjust gain to match target amplitudes */
     892        1744 :     pNum[0] = mult( BASOP_Util_Divide1616_Scale( pNum[0], pDen[0], &exp ), lin_gain_hf );
     893        1744 :     move16();
     894        1744 :     norm_num0 = add( exp, sub( norm_num0, norm_den0 ) );
     895             : 
     896        1744 :     pNum[1] = mult( BASOP_Util_Divide1616_Scale( pNum[1], pDen[0], &exp ), lin_gain_hf );
     897        1744 :     move16();
     898        1744 :     norm_num1 = add( exp, sub( norm_num1, norm_den0 ) );
     899             : 
     900        1744 :     pDen[1] = BASOP_Util_Divide1616_Scale( pDen[1], pDen[0], &exp );
     901        1744 :     move16();
     902        1744 :     norm_den1 = add( exp, sub( norm_den1, norm_den0 ) );
     903             : 
     904        1744 :     pNum[0] = shr( pNum[0], sub( 1, norm_num0 ) ); // Q14
     905        1744 :     move16();
     906        1744 :     pNum[1] = shr( pNum[1], sub( 1, norm_num1 ) ); // Q14
     907        1744 :     move16();
     908        1744 :     pDen[1] = shr( pDen[1], sub( 1, norm_den1 ) ); // Q14
     909        1744 :     move16();
     910        1744 :     pDen[0] = shl( 1, 14 ); // Q14
     911        1744 :     move16();
     912             : 
     913        1744 :     return;
     914             : }
     915             : 
     916             : 
     917             : /*-----------------------------------------------------------------------------------------*
     918             :  * Function calc_jot_t60_coeffs()
     919             :  *
     920             :  * Calculate Jot reverb's T60 filters
     921             :  *-----------------------------------------------------------------------------------------*/
     922             : 
     923        1744 : static ivas_error calc_jot_t60_coeffs_fx(
     924             :     Word16 *pH_dB_fx,
     925             :     Word16 pH_dB_exp,
     926             :     const UWord16 nrFrequencies,
     927             :     Word16 *pFrequencies_fx,
     928             :     Word16 *pCoeffA_fx, /* Q14 */
     929             :     Word16 *pCoeffB_fx, /* Q14 */
     930             :     const Word16 fNyquist_fx )
     931             : {
     932             :     Word16 scale1, scale2, scale3, scale4;
     933        1744 :     Word16 ref_lf_min_norm_fx = BASOP_Util_Divide1616_Scale( REF_LF_MIN_FX, fNyquist_fx, &scale1 );
     934        1744 :     Word16 ref_lf_max_norm_fx = BASOP_Util_Divide1616_Scale( REF_LF_MAX_FX, fNyquist_fx, &scale2 );
     935        1744 :     Word16 ref_hf_min_norm_fx = BASOP_Util_Divide1616_Scale( REF_HF_MIN_FX, fNyquist_fx, &scale3 );
     936        1744 :     Word16 ref_hf_max_norm_fx = BASOP_Util_Divide1616_Scale( REF_HF_MAX_FX, fNyquist_fx, &scale4 );
     937             : 
     938        1744 :     ref_lf_min_norm_fx = shl( ref_lf_min_norm_fx, sub( scale1, 1 ) ); // Q14
     939        1744 :     ref_lf_max_norm_fx = shl( ref_lf_max_norm_fx, sub( scale2, 1 ) ); // Q14
     940        1744 :     ref_hf_min_norm_fx = shl( ref_hf_min_norm_fx, sub( scale3, 1 ) ); // Q14
     941        1744 :     ref_hf_max_norm_fx = shl( ref_hf_max_norm_fx, sub( scale4, 1 ) ); // Q14
     942             : 
     943             :     Word32 L_tmp;
     944             :     Word16 f0_fx, tmp_fx, lf_target_gain_dB_fx, hf_target_gain_dB_fx, mid_crossing_gain_dB_fx;
     945             :     Word16 lin_gain_lf_fx, lin_gain_hf_fx, shift, expl, exph;
     946        1744 :     Word16 f_idx, e = pH_dB_exp;
     947        1744 :     move16();
     948             :     UWord16 n_points_lf, n_points_hf;
     949             : 
     950        1744 :     lf_target_gain_dB_fx = 0;
     951        1744 :     move16();
     952        1744 :     hf_target_gain_dB_fx = 0;
     953        1744 :     move16();
     954        1744 :     Word32 minval_fx = 1455191552;
     955        1744 :     move32();
     956        1744 :     Word16 minval_e = 67, exp;
     957        1744 :     move16();
     958             : 
     959        1744 :     Word32 L_tmpl = 0, L_tmph = 0;
     960        1744 :     move32();
     961        1744 :     move32();
     962        1744 :     n_points_lf = 0;
     963        1744 :     move16();
     964        1744 :     n_points_hf = 0;
     965        1744 :     move16();
     966        1744 :     Word16 minidx_fx = sub( nrFrequencies, 1 );
     967             : 
     968      387488 :     FOR( f_idx = 0; f_idx < nrFrequencies; f_idx++ )
     969             :     {
     970      385744 :         test();
     971      385744 :         IF( GE_16( pFrequencies_fx[f_idx], ref_lf_min_norm_fx ) && LE_16( pFrequencies_fx[f_idx], ref_lf_max_norm_fx ) )
     972             :         {
     973        3200 :             L_tmpl = L_add( L_tmpl, pH_dB_fx[f_idx] );
     974        3200 :             n_points_lf = add( n_points_lf, 1 );
     975             :         }
     976      385744 :         test();
     977      385744 :         IF( GE_16( pFrequencies_fx[f_idx], ref_hf_min_norm_fx ) && LE_16( pFrequencies_fx[f_idx], ref_hf_max_norm_fx ) )
     978             :         {
     979       66440 :             L_tmph = L_add( L_tmph, pH_dB_fx[f_idx] );
     980       66440 :             n_points_hf = add( n_points_hf, 1 );
     981             :         }
     982             :     }
     983        1744 :     shift = norm_l( L_tmpl );
     984        1744 :     L_tmpl = L_shl( L_tmpl, shift );
     985        1744 :     tmp_fx = extract_h( L_tmpl );
     986        1744 :     expl = sub( e, sub( shift, 16 ) );
     987        1744 :     lf_target_gain_dB_fx = tmp_fx;
     988        1744 :     move16();
     989             : 
     990        1744 :     shift = norm_l( L_tmph );
     991        1744 :     L_tmph = L_shl( L_tmph, shift );
     992        1744 :     tmp_fx = extract_h( L_tmph );
     993        1744 :     exph = sub( e, sub( shift, 16 ) );
     994        1744 :     hf_target_gain_dB_fx = tmp_fx;
     995        1744 :     move16();
     996             : 
     997        1744 :     test();
     998        1744 :     IF( ( n_points_lf == 0 ) || ( n_points_hf == 0 ) )
     999             :     {
    1000           0 :         return IVAS_ERR_INTERNAL;
    1001             :     }
    1002             : 
    1003        1744 :     lf_target_gain_dB_fx = BASOP_Util_Divide1616_Scale( lf_target_gain_dB_fx, n_points_lf, &e );
    1004        1744 :     expl = add( e, sub( expl, 15 ) );
    1005             : 
    1006        1744 :     hf_target_gain_dB_fx = BASOP_Util_Divide1616_Scale( hf_target_gain_dB_fx, n_points_hf, &e );
    1007        1744 :     exph = add( e, sub( exph, 15 ) );
    1008             : 
    1009        1744 :     e = BASOP_Util_Add_MantExp( lf_target_gain_dB_fx, expl, negate( hf_target_gain_dB_fx ), exph, &tmp_fx );
    1010        1744 :     exp = BASOP_Util_Add_MantExp( hf_target_gain_dB_fx, exph, tmp_fx, e - 1, &mid_crossing_gain_dB_fx );
    1011             : 
    1012      384000 :     FOR( f_idx = 1; f_idx < nrFrequencies - 1; f_idx++ )
    1013             :     {
    1014             :         Word16 tmp1;
    1015      382256 :         e = BASOP_Util_Add_MantExp( pH_dB_fx[f_idx], pH_dB_exp, negate( mid_crossing_gain_dB_fx ), exp, &tmp_fx );
    1016      382256 :         tmp1 = abs_s( tmp_fx );
    1017             : 
    1018      382256 :         tmp_fx = BASOP_Util_Cmp_Mant32Exp( L_deposit_h( tmp1 ), e, minval_fx, minval_e );
    1019             : 
    1020      382256 :         IF( EQ_16( tmp_fx, -1 ) )
    1021             :         {
    1022       25199 :             minval_fx = L_deposit_h( tmp1 );
    1023       25199 :             minval_e = e;
    1024       25199 :             move16();
    1025       25199 :             minidx_fx = f_idx;
    1026       25199 :             move16();
    1027             :         }
    1028             :     }
    1029             : 
    1030        1744 :     f0_fx = pFrequencies_fx[minidx_fx];
    1031        1744 :     move16();
    1032             : 
    1033        1744 :     tmp_fx = mult( lf_target_gain_dB_fx, 5443 ); // expl
    1034        1744 :     L_tmp = BASOP_util_Pow2( L_deposit_h( tmp_fx ), expl, &e );
    1035        1744 :     lin_gain_lf_fx = extract_l( L_shr( L_tmp, sub( 16, e ) ) );
    1036             : 
    1037        1744 :     tmp_fx = mult( hf_target_gain_dB_fx, 5443 ); // exph
    1038        1744 :     L_tmp = BASOP_util_Pow2( L_deposit_h( tmp_fx ), exph, &e );
    1039        1744 :     lin_gain_hf_fx = extract_l( L_shr( L_tmp, sub( 16, e ) ) );
    1040             : 
    1041             : #ifdef FIX_1942_ASSERTION_LOWSHELF
    1042        1744 :     IF( EQ_16( lin_gain_hf_fx, 0 ) )
    1043             :     {
    1044           0 :         lin_gain_hf_fx = 1;
    1045           0 :         move16();
    1046             :     }
    1047             : #endif
    1048             : 
    1049             :     /* call low-pass iir shelf */
    1050        1744 :     calc_low_shelf_first_order_filter_fx( pCoeffB_fx, pCoeffA_fx, f0_fx, lin_gain_lf_fx, lin_gain_hf_fx );
    1051             : 
    1052        1744 :     return IVAS_ERR_OK;
    1053             : }
    1054             : 
    1055             : 
    1056             : /*-----------------------------------------------------------------------------------------*
    1057             :  * Function initialize_reverb_filters()
    1058             :  *
    1059             :  * Set the number of branches (feedback loops) and Initializes the memory structure (pointers to data)
    1060             :  *-----------------------------------------------------------------------------------------*/
    1061             : 
    1062         163 : static ivas_error initialize_reverb_filters_fx(
    1063             :     REVERB_HANDLE hReverb )
    1064             : {
    1065             :     ivas_error error;
    1066             : 
    1067             :     /* init correlation and coloration filters */
    1068         163 :     IF( NE_32( ( error = ivas_reverb_t2f_f2t_init( &hReverb->fft_filter_ols, hReverb->fft_size, hReverb->fft_subblock_size ) ), IVAS_ERR_OK ) )
    1069             :     {
    1070           0 :         return error;
    1071             :     }
    1072             : 
    1073         163 :     IF( NE_32( ( error = ivas_reverb_fft_filter_init( &hReverb->fft_filter_correl_0, hReverb->fft_size ) ), IVAS_ERR_OK ) )
    1074             :     {
    1075           0 :         return error;
    1076             :     }
    1077             : 
    1078         163 :     IF( NE_32( ( error = ivas_reverb_fft_filter_init( &hReverb->fft_filter_correl_1, hReverb->fft_size ) ), IVAS_ERR_OK ) )
    1079             :     {
    1080           0 :         return error;
    1081             :     }
    1082             : 
    1083         163 :     IF( NE_32( ( error = ivas_reverb_fft_filter_init( &hReverb->fft_filter_color_0, hReverb->fft_size ) ), IVAS_ERR_OK ) )
    1084             :     {
    1085           0 :         return error;
    1086             :     }
    1087             : 
    1088         163 :     IF( NE_32( ( error = ivas_reverb_fft_filter_init( &hReverb->fft_filter_color_1, hReverb->fft_size ) ), IVAS_ERR_OK ) )
    1089             :     {
    1090           0 :         return error;
    1091             :     }
    1092             : 
    1093         163 :     return IVAS_ERR_OK;
    1094             : }
    1095             : 
    1096             : 
    1097             : /*-----------------------------------------------------------------------------------------*
    1098             :  * Function set_t60_filter()
    1099             :  *
    1100             :  * Sets t60 number of taps and coefficients A and B
    1101             :  *-----------------------------------------------------------------------------------------*/
    1102             : 
    1103        1744 : static ivas_error set_t60_filter(
    1104             :     REVERB_HANDLE hReverb,
    1105             :     const UWord16 branch,
    1106             :     const UWord16 nr_taps,
    1107             :     const Word16 coefA[], /*Q14*/
    1108             :     const Word16 coefB[] /*Q14*/ )
    1109             : {
    1110        1744 :     IF( GE_32( branch, hReverb->nr_of_branches ) )
    1111             :     {
    1112           0 :         return IVAS_ERR_INTERNAL;
    1113             :     }
    1114             : 
    1115        1744 :     IF( GT_32( nr_taps, IVAS_REV_MAX_IIR_FILTER_LENGTH ) )
    1116             :     {
    1117           0 :         return IVAS_ERR_INTERNAL;
    1118             :     }
    1119             : 
    1120        1744 :     ivas_reverb_iir_filt_set( &( hReverb->t60[branch] ), nr_taps, coefA, coefB );
    1121             : 
    1122        1744 :     return IVAS_ERR_OK;
    1123             : }
    1124             : 
    1125             : 
    1126             : /*-----------------------------------------------------------------------------------------*
    1127             :  * Function set_feedback_delay()
    1128             :  *
    1129             :  * Sets Delay of feedback branch in number of samples
    1130             :  *-----------------------------------------------------------------------------------------*/
    1131             : 
    1132        1304 : static ivas_error set_feedback_delay_fx(
    1133             :     REVERB_HANDLE hReverb,
    1134             :     const UWord16 branch,
    1135             :     const Word16 fb_delay /*Q0*/ )
    1136             : {
    1137        1304 :     IF( GE_32( branch, hReverb->nr_of_branches ) )
    1138             :     {
    1139           0 :         return IVAS_ERR_INTERNAL;
    1140             :     }
    1141             : 
    1142        1304 :     hReverb->delay_line[branch].Delay = fb_delay;
    1143        1304 :     move16();
    1144             : 
    1145        1304 :     return IVAS_ERR_OK;
    1146             : }
    1147             : 
    1148             : 
    1149             : /*-----------------------------------------------------------------------------------------*
    1150             :  * Function set_feedback_gain()
    1151             :  *
    1152             :  * Sets nr_of_branches feedback gain values in feedback matrix
    1153             :  *-----------------------------------------------------------------------------------------*/
    1154             : 
    1155        1304 : static ivas_error set_feedback_gain_fx(
    1156             :     REVERB_HANDLE hReverb,
    1157             :     const UWord16 branch,
    1158             :     const Word32 *pGain /*Q31*/ )
    1159             : {
    1160             :     UWord16 gain_idx;
    1161        1304 :     IF( GE_32( branch, hReverb->nr_of_branches ) )
    1162             :     {
    1163           0 :         return IVAS_ERR_INTERNAL;
    1164             :     }
    1165             : 
    1166       11736 :     FOR( gain_idx = 0; gain_idx < hReverb->nr_of_branches; gain_idx++ )
    1167             :     {
    1168       10432 :         hReverb->gain_matrix_fx[branch][gain_idx] = pGain[gain_idx]; // Q31
    1169       10432 :         move32();
    1170             :     }
    1171             : 
    1172        1304 :     return IVAS_ERR_OK;
    1173             : }
    1174             : 
    1175             : 
    1176             : /*-----------------------------------------------------------------------------------------*
    1177             :  * Function set_correl_fft_filter()
    1178             :  *
    1179             :  * Sets correlation filter complex gains
    1180             :  *-----------------------------------------------------------------------------------------*/
    1181             : 
    1182         436 : static ivas_error set_correl_fft_filter_fx(
    1183             :     REVERB_HANDLE hReverb,
    1184             :     const UWord16 channel,
    1185             :     rv_fftwf_type_complex_fx *pSpectrum )
    1186             : {
    1187         436 :     IF( GT_32( channel, 1 ) )
    1188             :     {
    1189           0 :         return IVAS_ERR_INTERNAL;
    1190             :     }
    1191             : 
    1192         436 :     IF( EQ_32( channel, 0 ) )
    1193             :     {
    1194         218 :         ivas_reverb_fft_filter_ConvertFFTWF_2_FFTR_fx( pSpectrum, hReverb->fft_filter_correl_0.fft_spectrum_fx, hReverb->fft_filter_correl_0.fft_size );
    1195             :     }
    1196             :     ELSE
    1197             :     {
    1198         218 :         ivas_reverb_fft_filter_ConvertFFTWF_2_FFTR_fx( pSpectrum, hReverb->fft_filter_correl_1.fft_spectrum_fx, hReverb->fft_filter_correl_1.fft_size );
    1199             :     }
    1200             : 
    1201         436 :     return IVAS_ERR_OK;
    1202             : }
    1203             : 
    1204             : 
    1205             : /*-----------------------------------------------------------------------------------------*
    1206             :  * Function set_color_fft_filter()
    1207             :  *
    1208             :  * Sets coloration filter complex gains
    1209             :  *-----------------------------------------------------------------------------------------*/
    1210             : 
    1211         436 : static ivas_error set_color_fft_filter_fx(
    1212             :     REVERB_HANDLE hReverb,
    1213             :     const UWord16 channel,
    1214             :     rv_fftwf_type_complex_fx *pSpectrum )
    1215             : {
    1216         436 :     IF( GT_32( channel, 1 ) )
    1217             :     {
    1218           0 :         return IVAS_ERR_INTERNAL;
    1219             :     }
    1220             : 
    1221         436 :     IF( EQ_32( channel, 0 ) )
    1222             :     {
    1223         218 :         ivas_reverb_fft_filter_ConvertFFTWF_2_FFTR_fx( pSpectrum, hReverb->fft_filter_color_0.fft_spectrum_fx, hReverb->fft_filter_color_0.fft_size );
    1224             :     }
    1225             :     ELSE
    1226             :     {
    1227         218 :         ivas_reverb_fft_filter_ConvertFFTWF_2_FFTR_fx( pSpectrum, hReverb->fft_filter_color_1.fft_spectrum_fx, hReverb->fft_filter_color_1.fft_size );
    1228             :     }
    1229             : 
    1230         436 :     return IVAS_ERR_OK;
    1231             : }
    1232             : 
    1233             : 
    1234             : /*-----------------------------------------------------------------------------------------*
    1235             :  * Function set_mixer_level_fx()
    1236             :  *
    1237             :  * Sets Mixer level: to mix 2 output channels from 8 feedback branches
    1238             :  *-----------------------------------------------------------------------------------------*/
    1239             : 
    1240         326 : static ivas_error set_mixer_level_fx(
    1241             :     REVERB_HANDLE hReverb,
    1242             :     const UWord16 channel,
    1243             :     const Word16 level[] /*Q0*/ )
    1244             : {
    1245             :     UWord16 branch_idx;
    1246         326 :     IF( GE_32( channel, BINAURAL_CHANNELS ) )
    1247             :     {
    1248           0 :         return IVAS_ERR_INTERNAL;
    1249             :     }
    1250             : 
    1251        2934 :     FOR( branch_idx = 0; branch_idx < hReverb->nr_of_branches; branch_idx++ )
    1252             :     {
    1253        2608 :         hReverb->mixer_fx[channel][branch_idx] = level[branch_idx]; /*Q0*/
    1254        2608 :         move16();
    1255             :     }
    1256             : 
    1257         326 :     return IVAS_ERR_OK;
    1258             : }
    1259             : 
    1260             : 
    1261             : /*-----------------------------------------------------------------------------------------*
    1262             :  * Function clear_buffers_fx()
    1263             :  *
    1264             :  * Clears buffers of delay lines and filters
    1265             :  *-----------------------------------------------------------------------------------------*/
    1266             : 
    1267         163 : static void clear_buffers_fx(
    1268             :     REVERB_HANDLE hReverb )
    1269             : {
    1270             :     Word16 branch_idx;
    1271             :     ivas_rev_iir_filter_t *iirFilter;
    1272             :     ivas_rev_delay_line_t *delay_line;
    1273             : 
    1274        1467 :     FOR( branch_idx = 0; branch_idx < IVAS_REV_MAX_NR_BRANCHES; branch_idx++ )
    1275             :     {
    1276        1304 :         delay_line = &( hReverb->delay_line[branch_idx] );
    1277        1304 :         set32_fx( delay_line->pBuffer_fx, 0, delay_line->MaxDelay );
    1278        1304 :         delay_line->BufferPos = 0;
    1279        1304 :         move16();
    1280             : 
    1281        1304 :         iirFilter = &( hReverb->t60[branch_idx] );
    1282        1304 :         set32_fx( iirFilter->pBuffer_fx, 0, iirFilter->MaxTaps );
    1283             :     }
    1284             : 
    1285         163 :     ivas_reverb_t2f_f2t_ClearHistory( &hReverb->fft_filter_ols );
    1286             : 
    1287         163 :     return;
    1288             : }
    1289             : 
    1290             : 
    1291             : /*-----------------------------------------------------------------------------------------*
    1292             :  * Function set_fft_and_datablock_sizes_fx()
    1293             :  *
    1294             :  * Sets frame size and fft-filter related sizes
    1295             :  *-----------------------------------------------------------------------------------------*/
    1296             : 
    1297         218 : static void set_fft_and_datablock_sizes_fx(
    1298             :     REVERB_HANDLE hReverb,
    1299             :     const Word16 subframe_len )
    1300             : {
    1301         218 :     hReverb->full_block_size = subframe_len;
    1302         218 :     IF( EQ_16( subframe_len, 240 /*L_FRAME48k / MAX_PARAM_SPATIAL_SUBFRAMES*/ ) )
    1303             :     {
    1304         127 :         hReverb->fft_size = IVAS_REVERB_FFT_SIZE_48K;
    1305         127 :         move16();
    1306         127 :         hReverb->num_fft_subblocks = IVAS_REVERB_FFT_N_SUBBLOCKS_48K;
    1307         127 :         move16();
    1308             :     }
    1309          91 :     ELSE IF( EQ_16( subframe_len, 160 /*L_FRAME32k / MAX_PARAM_SPATIAL_SUBFRAMES*/ ) )
    1310             :     {
    1311          30 :         hReverb->fft_size = IVAS_REVERB_FFT_SIZE_32K;
    1312          30 :         move16();
    1313          30 :         hReverb->num_fft_subblocks = IVAS_REVERB_FFT_N_SUBBLOCKS_32K;
    1314          30 :         move16();
    1315             :     }
    1316          61 :     ELSE IF( EQ_16( subframe_len, 80 /*L_FRAME16k / MAX_PARAM_SPATIAL_SUBFRAMES*/ ) )
    1317             :     {
    1318          61 :         hReverb->fft_size = IVAS_REVERB_FFT_SIZE_16K;
    1319          61 :         move16();
    1320          61 :         hReverb->num_fft_subblocks = IVAS_REVERB_FFT_N_SUBBLOCKS_16K;
    1321          61 :         move16();
    1322             :     }
    1323             :     ELSE
    1324             :     {
    1325           0 :         assert( 0 ); /* unsupported block size */
    1326             :     }
    1327             : 
    1328         218 :     hReverb->fft_subblock_size = (UWord16) idiv1616( subframe_len, hReverb->num_fft_subblocks );
    1329         218 :     move16();
    1330             : 
    1331         218 :     return;
    1332             : }
    1333             : 
    1334             : 
    1335             : /*-----------------------------------------------------------------------------------------*
    1336             :  * Function set_reverb_acoustic_data_fx()
    1337             :  *
    1338             :  * Sets reverb acoustic data (room acoustics and HRTF), interpolating it to the filter grid
    1339             :  *-----------------------------------------------------------------------------------------*/
    1340             : 
    1341         218 : static void set_reverb_acoustic_data_fx(
    1342             :     ivas_reverb_params_t *pParams,
    1343             :     IVAS_ROOM_ACOUSTICS_CONFIG_DATA *pRoomAcoustics,
    1344             :     const Word16 nr_fc_input,
    1345             :     const Word16 nr_fc_fft_filter )
    1346             : {
    1347             :     Word16 bin_idx;
    1348             :     Word32 ln_1e6_inverted_fx, delay_diff_fx, L_tmp;
    1349             :     Word32 exp_argument_fx, tmp;
    1350             :     Word16 pow_exp, exp_argument_e;
    1351             : 
    1352         218 :     Word32 *pFc_input_fx = pRoomAcoustics->pFc_input_fx;
    1353         218 :     Word32 *pAcoustic_rt60_fx = pRoomAcoustics->pAcoustic_rt60_fx;
    1354         218 :     Word32 *pAcoustic_dsr_fx = pRoomAcoustics->pAcoustic_dsr_fx;
    1355             : 
    1356         218 :     Word32 *pFc_fx = pParams->pFc_fx;
    1357         218 :     Word32 *pRt60_fx = pParams->pRt60_fx;
    1358         218 :     Word32 *pDsr_fx = pParams->pDsr_fx;
    1359             : 
    1360             :     /* interpolate input table data for T60 and DSR to the FFT filter grid */
    1361             : 
    1362         218 :     ivas_reverb_interp_on_freq_grid_fx( nr_fc_input, pFc_input_fx, pAcoustic_rt60_fx, nr_fc_fft_filter, pFc_fx, pRt60_fx ); // Q26
    1363         218 :     ivas_reverb_interp_on_freq_grid_fx( nr_fc_input, pFc_input_fx, pAcoustic_dsr_fx, nr_fc_fft_filter, pFc_fx, pDsr_fx );   // Q30
    1364             : 
    1365             :     /* adjust DSR for the delay difference */
    1366         218 :     delay_diff_fx = L_sub( pRoomAcoustics->inputPreDelay_fx, pRoomAcoustics->acousticPreDelay_fx ); // Q27
    1367             : 
    1368         218 :     ln_1e6_inverted_fx = 155440049; // Q31 /* 1.0f / logf( 1e06f ) */
    1369         218 :     move32();
    1370             : 
    1371       48436 :     FOR( bin_idx = 0; bin_idx < nr_fc_fft_filter; bin_idx++ )
    1372             :     {
    1373       48218 :         L_tmp = Mpy_32_32( pRt60_fx[bin_idx], ln_1e6_inverted_fx ); // Q26
    1374             : 
    1375       48218 :         exp_argument_fx = BASOP_Util_Divide3232_Scale_newton( delay_diff_fx, L_tmp, &exp_argument_e );
    1376       48218 :         exp_argument_fx = L_shr_sat( exp_argument_fx, sub( 6, exp_argument_e ) ); // Q26
    1377             : 
    1378             :         /* Limit exponent to approx +/-100 dB in case of incoherent value of delay_diff, to prevent overflow */
    1379       48218 :         IF( GT_32( exp_argument_fx, 1543503872 ) ) // 23 in Q26
    1380             :         {
    1381           0 :             exp_argument_fx = 1543503872;
    1382             :         }
    1383       48218 :         IF( LT_32( exp_argument_fx, -1543503872 ) ) // 23 in Q26
    1384             :         {
    1385           0 :             exp_argument_fx = -1543503872;
    1386             :         }
    1387             : 
    1388       48218 :         tmp = Mpy_32_32( 96817114, exp_argument_fx ); // Q21
    1389             : 
    1390       48218 :         L_tmp = BASOP_util_Pow2( tmp, 10, &pow_exp );
    1391       48218 :         L_tmp = Mpy_32_32( L_tmp, pDsr_fx[bin_idx] );
    1392       48218 :         L_tmp = L_shl_sat( L_tmp, add( 1, pow_exp ) ); // Q31
    1393             : 
    1394       48218 :         pDsr_fx[bin_idx] = L_tmp;
    1395       48218 :         move32();
    1396             :     }
    1397             : 
    1398         218 :     return;
    1399             : }
    1400             : 
    1401             : 
    1402             : /*-----------------------------------------------------------------------------------------*
    1403             :  * Function setup_FDN_branches_fx()
    1404             :  *
    1405             :  * Sets up feedback delay network system
    1406             :  *-----------------------------------------------------------------------------------------*/
    1407             : 
    1408         163 : static ivas_error setup_FDN_branches_fx(
    1409             :     REVERB_HANDLE hReverb,
    1410             :     ivas_reverb_params_t *pParams )
    1411             : {
    1412             :     Word16 nr_coefs, branch_idx, channel_idx;
    1413             :     ivas_error error;
    1414         163 :     error = IVAS_ERR_OK;
    1415             : 
    1416             :     /* initialize feedback branches */
    1417        1467 :     FOR( branch_idx = 0; branch_idx < IVAS_REV_MAX_NR_BRANCHES; branch_idx++ )
    1418             :     {
    1419        1304 :         ivas_rev_delay_line_init( &( hReverb->delay_line[branch_idx] ), hReverb->loop_delay_buffer_fx[branch_idx], init_loop_delay[branch_idx], pParams->pLoop_delays[branch_idx] );
    1420        1304 :         ivas_reverb_iir_filt_init( &( hReverb->t60[branch_idx] ), IVAS_REV_MAX_IIR_FILTER_LENGTH );
    1421        1304 :         hReverb->mixer_fx[0][branch_idx] = 0;
    1422        1304 :         move16();
    1423        1304 :         hReverb->mixer_fx[1][branch_idx] = 0;
    1424        1304 :         move16();
    1425             :     }
    1426         163 :     clear_buffers_fx( hReverb );
    1427         163 :     nr_coefs = add( pParams->t60_filter_order, 1 );
    1428             : 
    1429         163 :     IF( LT_16( IVAS_REV_MAX_IIR_FILTER_LENGTH, nr_coefs ) )
    1430             :     {
    1431           0 :         return IVAS_ERR_INTERNAL;
    1432             :     }
    1433             :     ELSE
    1434             :     {
    1435        1467 :         FOR( branch_idx = 0; branch_idx < pParams->nr_loops; branch_idx++ )
    1436             :         {
    1437        1304 :             IF( NE_32( ( error = set_feedback_delay_fx( hReverb, branch_idx, pParams->pLoop_delays[branch_idx] ) ), IVAS_ERR_OK ) )
    1438             :             {
    1439           0 :                 return error;
    1440             :             }
    1441        1304 :             IF( NE_32( ( error = set_feedback_gain_fx( hReverb, branch_idx, &( pParams->pLoop_feedback_matrix_fx[i_mult( branch_idx, pParams->nr_loops )] ) ) ), IVAS_ERR_OK ) )
    1442             :             {
    1443           0 :                 return error;
    1444             :             }
    1445             :         }
    1446             :     }
    1447             : 
    1448         489 :     FOR( channel_idx = 0; channel_idx < pParams->nr_outputs; channel_idx++ )
    1449             :     {
    1450         326 :         IF( NE_32( ( error = set_mixer_level_fx( hReverb, channel_idx, &( pParams->pLoop_extract_matrix_fx[i_mult( channel_idx, pParams->nr_loops )] ) ) ), IVAS_ERR_OK ) )
    1451             :         {
    1452           0 :             return error;
    1453             :         }
    1454             :     }
    1455             : 
    1456         163 :     return error;
    1457             : }
    1458             : 
    1459             : 
    1460             : /*-------------------------------------------------------------------------
    1461             :  * ivas_reverb_open_fx()
    1462             :  *
    1463             :  * Allocate and initialize FDN reverberation handle
    1464             :  *------------------------------------------------------------------------*/
    1465             : 
    1466         218 : ivas_error ivas_reverb_open_fx(
    1467             :     REVERB_HANDLE *hReverb,                        /* i/o: Reverberator handle               */
    1468             :     const HRTFS_STATISTICS_HANDLE hHrtfStatistics, /* i  : HRTF statistics handle            */
    1469             :     RENDER_CONFIG_HANDLE hRenderConfig,            /* i  : Renderer configuration handle     */
    1470             :     const Word32 output_Fs                         /* i  : output sampling rate              */
    1471             : )
    1472             : {
    1473             :     ivas_error error;
    1474         218 :     REVERB_HANDLE pState = *hReverb;
    1475             :     UWord16 nr_coefs, branch_idx;
    1476             :     Word16 *pCoef_a, *pCoef_b;
    1477             :     Word16 bin_idx, subframe_len, output_frame, predelay_bf_len, loop_idx, i;
    1478             :     ivas_reverb_params_t params;
    1479             :     Word32 pColor_target_l_fx[RV_LENGTH_NR_FC];
    1480             :     Word32 pColor_target_r_fx[RV_LENGTH_NR_FC];
    1481             :     Word32 pTime_window_fx[RV_FILTER_MAX_FFT_SIZE];
    1482             :     Word32 freq_step_fx;
    1483             :     Word16 fft_hist_size, transition_start, transition_length;
    1484             :     Word16 nr_fc_input, nr_fc_fft_filter;
    1485             :     rv_fftwf_type_complex_fx pFft_wf_filter_ch0_fx[RV_LENGTH_NR_FC];
    1486             :     rv_fftwf_type_complex_fx pFft_wf_filter_ch1_fx[RV_LENGTH_NR_FC];
    1487             : 
    1488         218 :     output_frame = extract_l( Mult_32_16( output_Fs, INV_FRAME_PER_SEC_Q15 ) );
    1489         218 :     subframe_len = shr( output_frame, 2 ); /*output_frame / MAX_PARAM_SPATIAL_SUBFRAMES*/
    1490         218 :     predelay_bf_len = output_frame;
    1491         218 :     move16();
    1492         218 :     nr_fc_input = hRenderConfig->roomAcoustics.nBands;
    1493             : 
    1494         218 :     IF( *hReverb == NULL )
    1495             :     {
    1496         163 :         IF( ( pState = (REVERB_HANDLE) malloc( sizeof( REVERB_DATA ) ) ) == NULL )
    1497             :         {
    1498           0 :             return IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Cannot allocate memory for FDN Reverberator" );
    1499             :         }
    1500             :     }
    1501             : 
    1502         218 :     IF( NE_32( ( error = set_base_config_fx( &params, output_Fs ) ), IVAS_ERR_OK ) )
    1503             :     {
    1504           0 :         return error;
    1505             :     }
    1506             : 
    1507         218 :     IF( *hReverb == NULL )
    1508             :     {
    1509             :         /* Allocate memory for feedback delay lines */
    1510        1467 :         FOR( loop_idx = 0; loop_idx < IVAS_REV_MAX_NR_BRANCHES; loop_idx++ )
    1511             :         {
    1512        1304 :             IF( ( pState->loop_delay_buffer_fx[loop_idx] = (Word32 *) malloc( params.pLoop_delays[loop_idx] * sizeof( Word32 ) ) ) == NULL )
    1513             :             {
    1514           0 :                 return IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Cannot allocate memory for FDN Reverberator" );
    1515             :             }
    1516             :         }
    1517             : 
    1518             :         /* Allocate memory for the pre-delay line */
    1519         163 :         IF( ( pState->pPredelay_buffer_fx = (Word32 *) malloc( output_frame * sizeof( Word32 ) ) ) == NULL )
    1520             :         {
    1521           0 :             return IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for CREND Reverberator" );
    1522             :         }
    1523             :     }
    1524             : 
    1525         218 :     pState->nr_of_branches = IVAS_REV_MAX_NR_BRANCHES;
    1526         218 :     move16();
    1527         218 :     set_fft_and_datablock_sizes_fx( pState, subframe_len );
    1528             : 
    1529         218 :     nr_fc_fft_filter = add( extract_l( L_shr( pState->fft_size, 1 ) ), 1 );
    1530             : 
    1531             :     /* === 'Control logic': compute the reverb processing parameters from the              === */
    1532             :     /* === room, source and listener acoustic information provided in the reverb config    === */
    1533             :     /* Setting up shared temporary buffers for fc, RT60, DSR, etc.                             */
    1534         218 :     params.pRt60_fx = &pFft_wf_filter_ch1_fx[0][0];
    1535         218 :     params.pDsr_fx = params.pRt60_fx + nr_fc_fft_filter;
    1536         218 :     params.pFc_fx = &pState->fft_filter_color_0.fft_spectrum_fx[0];
    1537         218 :     set32_fx( pState->fft_filter_color_1.fft_spectrum_fx, 0, RV_FILTER_MAX_FFT_SIZE );
    1538             :     /* Note: these temp buffers can only be used before the final step of the FFT filter design :     */
    1539             :     /* before calls to ivas_reverb_calc_correl_filters(...) or to ivas_reverb_calc_color_filters(...) */
    1540             : 
    1541             :     /* set the uniform frequency grid for FFT filtering                                               */
    1542         218 :     freq_step_fx = L_mult0( extract_l( L_shr( output_Fs, 2 ) ), div_s( 1, ( nr_fc_fft_filter - 1 ) ) ); /*Q14:0.5f * output_Fs / ( nr_fc_fft_filter - 1 )*/
    1543       48436 :     FOR( bin_idx = 0; bin_idx < nr_fc_fft_filter; bin_idx++ )
    1544             :     {
    1545       48218 :         params.pFc_fx[bin_idx] = W_extract_l( W_mult0_32_32( freq_step_fx, bin_idx ) ); /*Q16*/
    1546             :     }
    1547             : 
    1548         218 :     test();
    1549             : 
    1550             :     /* set up reverb acoustic data on the basis of HRTF data and renderer config  */
    1551         218 :     Scale_sig32( params.pFc_fx, nr_fc_fft_filter, 2 );
    1552             : 
    1553         218 :     set_reverb_acoustic_data_fx( &params, &hRenderConfig->roomAcoustics, nr_fc_input, nr_fc_fft_filter );
    1554             : 
    1555         218 :     params.pHrtf_avg_pwr_response_l_const_fx = hHrtfStatistics->average_energy_l;
    1556         218 :     params.pHrtf_avg_pwr_response_r_const_fx = hHrtfStatistics->average_energy_r;
    1557         218 :     params.pHrtf_inter_aural_coherence_const_fx = hHrtfStatistics->inter_aural_coherence;
    1558             : 
    1559             :     /* set reverb acoustic configuration based on renderer config  */
    1560         218 :     pState->pConfig.roomAcoustics.nBands = hRenderConfig->roomAcoustics.nBands;
    1561         218 :     move16();
    1562             : 
    1563         218 :     IF( EQ_16( hRenderConfig->roomAcoustics.use_er, 1 ) )
    1564             :     {
    1565           7 :         pState->pConfig.roomAcoustics.use_er = hRenderConfig->roomAcoustics.use_er;
    1566           7 :         move16();
    1567           7 :         pState->pConfig.roomAcoustics.lowComplexity = hRenderConfig->roomAcoustics.lowComplexity;
    1568           7 :         move32();
    1569             :     }
    1570             : 
    1571         218 :     IF( *hReverb == NULL )
    1572             :     {
    1573         163 :         pState->dmx_gain_fx = calc_dmx_gain_fx();
    1574             :     }
    1575             : 
    1576             :     /*  set up predelay - must be after set_base_config() and before compute_t60_coeffs() */
    1577         218 :     calc_predelay_fx( &params, hRenderConfig->roomAcoustics.acousticPreDelay_fx, output_Fs );
    1578             : 
    1579             :     /*  set up jot reverb 60 filters - must be set up after set_reverb_acoustic_data() */
    1580         218 :     IF( NE_32( ( error = compute_t60_coeffs_fx( &params, nr_fc_fft_filter, output_Fs ) ), IVAS_ERR_OK ) )
    1581             :     {
    1582           0 :         return error;
    1583             :     }
    1584             : 
    1585             :     /* Compute target levels (gains) for the coloration filters */
    1586         218 :     Word32 *pHrtf_avg_pwr_response_l_const = (Word32 *) malloc( nr_fc_fft_filter * sizeof( Word32 * ) );
    1587         218 :     Word32 *pHrtf_avg_pwr_response_r_const = (Word32 *) malloc( nr_fc_fft_filter * sizeof( Word32 * ) );
    1588         218 :     Word16 lenT60_filter_coeff = add( params.t60_filter_order, 1 );
    1589         218 :     lenT60_filter_coeff = add( i_mult( shl( lenT60_filter_coeff, 1 ), sub( params.nr_loops, 1 ) ), add( lenT60_filter_coeff, 2 ) );
    1590         218 :     Word32 *pT60_filter_coeff = (Word32 *) malloc( ( lenT60_filter_coeff ) * sizeof( Word32 * ) );
    1591             : 
    1592             : 
    1593       48436 :     FOR( i = 0; i < nr_fc_fft_filter; i++ )
    1594             :     {
    1595       48218 :         pHrtf_avg_pwr_response_l_const[i] = params.pHrtf_avg_pwr_response_l_const_fx[i]; /*Q28*/
    1596       48218 :         move32();
    1597       48218 :         pHrtf_avg_pwr_response_r_const[i] = params.pHrtf_avg_pwr_response_r_const_fx[i]; /*Q23+5*/
    1598       48218 :         move32();
    1599             :     }
    1600        7194 :     FOR( i = 0; i < lenT60_filter_coeff; i++ )
    1601             :     {
    1602        6976 :         pT60_filter_coeff[i] = L_shl_sat( params.pT60_filter_coeff_fx[i], 17 );
    1603        6976 :         move32();
    1604             :     }
    1605         218 :     ivas_reverb_calc_color_levels_fx( output_Fs, nr_fc_fft_filter, params.nr_loops, params.pFc_fx, params.pDsr_fx, pHrtf_avg_pwr_response_l_const, pHrtf_avg_pwr_response_r_const,
    1606             :                                       params.pLoop_delays, pT60_filter_coeff, pColor_target_l_fx, pColor_target_r_fx );
    1607             : 
    1608         218 :     free( pHrtf_avg_pwr_response_l_const );
    1609         218 :     free( pHrtf_avg_pwr_response_r_const );
    1610         218 :     free( pT60_filter_coeff );
    1611             : 
    1612             :     /* Defining appropriate windowing parameters for FFT filters to prevent aliasing */
    1613         218 :     fft_hist_size = sub( pState->fft_size, pState->fft_subblock_size );
    1614             : 
    1615         218 :     transition_start = round_fx( L_mult0( FFT_FILTER_WND_FLAT_REGION_FX, fft_hist_size ) );
    1616         218 :     transition_length = round_fx( L_mult0( FFT_FILTER_WND_TRANS_REGION_FX, fft_hist_size ) );
    1617             : 
    1618             :     /* Compute the window used for FFT filters */
    1619         218 :     ivas_reverb_define_window_fft_fx( pTime_window_fx, transition_start, transition_length, nr_fc_fft_filter );
    1620             : 
    1621             :     /* === Copy parameters from ivas_reverb_params_t into DSP blocks   === */
    1622             :     /* === to be used for subsequent audio signal processing           === */
    1623         218 :     IF( *hReverb == NULL )
    1624             :     {
    1625         163 :         pState->do_corr_filter = params.do_corr_filter;
    1626         163 :         move16();
    1627             : 
    1628             :         /* clear & init jot reverb fft filters */
    1629         163 :         IF( NE_32( ( error = initialize_reverb_filters_fx( pState ) ), IVAS_ERR_OK ) )
    1630             :         {
    1631           0 :             return error;
    1632             :         }
    1633             :     }
    1634             : 
    1635         218 :     Word16 q_pFft_wf_filter_ch0_fx = 23, q_pFft_wf_filter_ch1_fx = 23;
    1636         218 :     move16();
    1637         218 :     move16();
    1638             : 
    1639         218 :     IF( pState->do_corr_filter )
    1640             :     {
    1641             :         /* Computing correlation filters on the basis of target IA coherence */
    1642       96218 :         FOR( i = 0; i < shl( sub( nr_fc_fft_filter, 1 ), 1 ); i++ )
    1643             :         {
    1644       96000 :             pTime_window_fx[i] = L_shr( pTime_window_fx[i], 1 ); /*Scaling signal down to 30*/
    1645       96000 :             move32();
    1646             :         }
    1647             : 
    1648         218 :         Word32 *pHrtf_inter_aural_coherence_const = (Word32 *) malloc( nr_fc_fft_filter * sizeof( Word32 ) );
    1649         218 :         IF( pHrtf_inter_aural_coherence_const == NULL )
    1650             :         {
    1651           0 :             return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for Binaural Reverberator\n" ) );
    1652             :         }
    1653             : 
    1654       48436 :         FOR( i = 0; i < nr_fc_fft_filter; i++ )
    1655             :         {
    1656       48218 :             pHrtf_inter_aural_coherence_const[i] = L_shl( params.pHrtf_inter_aural_coherence_const_fx[i], 4 ); /*Scaling up to Q30*/
    1657       48218 :             move32();
    1658             :         }
    1659             : 
    1660         218 :         ivas_reverb_calc_correl_filters_fx( pHrtf_inter_aural_coherence_const, pTime_window_fx, pState->fft_size, pFft_wf_filter_ch0_fx, pFft_wf_filter_ch1_fx, &q_pFft_wf_filter_ch0_fx, &q_pFft_wf_filter_ch1_fx );
    1661             : 
    1662         218 :         free( pHrtf_inter_aural_coherence_const );
    1663             : 
    1664       48436 :         FOR( i = 0; i < nr_fc_fft_filter; i++ )
    1665             :         {
    1666       48218 :             pFft_wf_filter_ch0_fx[i][0] = L_shl( pFft_wf_filter_ch0_fx[i][0], sub( 31, q_pFft_wf_filter_ch0_fx ) ); // Scale to Q31
    1667       48218 :             move32();
    1668       48218 :             pFft_wf_filter_ch0_fx[i][1] = L_shl( pFft_wf_filter_ch0_fx[i][1], sub( 31, q_pFft_wf_filter_ch0_fx ) ); // Scale to Q31
    1669       48218 :             move32();
    1670             :         }
    1671       48436 :         FOR( i = 0; i < nr_fc_fft_filter; i++ )
    1672             :         {
    1673       48218 :             pFft_wf_filter_ch1_fx[i][0] = L_shl( pFft_wf_filter_ch1_fx[i][0], sub( 31, q_pFft_wf_filter_ch1_fx ) ); // Scale to Q31
    1674       48218 :             move32();
    1675       48218 :             pFft_wf_filter_ch1_fx[i][1] = L_shl( pFft_wf_filter_ch1_fx[i][1], sub( 31, q_pFft_wf_filter_ch1_fx ) ); // Scale to Q31
    1676       48218 :             move32();
    1677             :         }
    1678             : 
    1679             :         /* Copying the computed FFT correlation filters to the fft_filter components */
    1680         218 :         IF( NE_32( ( error = set_correl_fft_filter_fx( pState, 0, pFft_wf_filter_ch0_fx ) ), IVAS_ERR_OK ) )
    1681             :         {
    1682           0 :             return error;
    1683             :         }
    1684             : 
    1685         218 :         IF( NE_32( ( error = set_correl_fft_filter_fx( pState, 1, pFft_wf_filter_ch1_fx ) ), IVAS_ERR_OK ) )
    1686             :         {
    1687           0 :             return error;
    1688             :         }
    1689             :     }
    1690             : 
    1691             :     /* Computing coloration filters on the basis of target responses */
    1692             : 
    1693         218 :     ivas_reverb_calc_color_filters_fx( pColor_target_l_fx, pColor_target_r_fx, pTime_window_fx, pState->fft_size, pFft_wf_filter_ch0_fx, pFft_wf_filter_ch1_fx, &q_pFft_wf_filter_ch0_fx, &q_pFft_wf_filter_ch1_fx );
    1694       48436 :     FOR( i = 0; i < nr_fc_fft_filter; i++ )
    1695             :     {
    1696       48218 :         pFft_wf_filter_ch0_fx[i][0] = L_shl( pFft_wf_filter_ch0_fx[i][0], sub( 31, q_pFft_wf_filter_ch0_fx ) );
    1697       48218 :         move32();
    1698       48218 :         pFft_wf_filter_ch0_fx[i][1] = L_shl( pFft_wf_filter_ch0_fx[i][1], sub( 31, q_pFft_wf_filter_ch0_fx ) );
    1699       48218 :         move32();
    1700             :     }
    1701       48436 :     FOR( i = 0; i < nr_fc_fft_filter; i++ )
    1702             :     {
    1703       48218 :         pFft_wf_filter_ch1_fx[i][0] = L_shl( pFft_wf_filter_ch1_fx[i][0], sub( 31, q_pFft_wf_filter_ch1_fx ) );
    1704       48218 :         move32();
    1705       48218 :         pFft_wf_filter_ch1_fx[i][1] = L_shl( pFft_wf_filter_ch1_fx[i][1], sub( 31, q_pFft_wf_filter_ch1_fx ) );
    1706       48218 :         move32();
    1707             :     }
    1708             : 
    1709             :     /* Copying the computed FFT colorations filters to the fft_filter components */
    1710         218 :     IF( NE_32( ( error = set_color_fft_filter_fx( pState, 0, pFft_wf_filter_ch0_fx ) ), IVAS_ERR_OK ) )
    1711             :     {
    1712           0 :         return error;
    1713             :     }
    1714             : 
    1715         218 :     IF( NE_32( ( error = set_color_fft_filter_fx( pState, 1, pFft_wf_filter_ch1_fx ) ), IVAS_ERR_OK ) )
    1716             :     {
    1717           0 :         return error;
    1718             :     }
    1719             : 
    1720         218 :     IF( *hReverb == NULL )
    1721             :     {
    1722             :         /* init predelay */
    1723         163 :         ivas_rev_delay_line_init( &( pState->predelay_line ), pState->pPredelay_buffer_fx, params.pre_delay, predelay_bf_len );
    1724             : 
    1725             :         /* set up feedback delay network */
    1726         163 :         IF( NE_32( ( error = setup_FDN_branches_fx( pState, &params ) ), IVAS_ERR_OK ) )
    1727             :         {
    1728           0 :             return error;
    1729             :         }
    1730             :     }
    1731             :     ELSE
    1732             :     {
    1733          55 :         pState->predelay_line.Delay = params.pre_delay;
    1734          55 :         move16();
    1735             :     }
    1736             : 
    1737         218 :     nr_coefs = params.t60_filter_order + 1;
    1738             : 
    1739        1962 :     FOR( branch_idx = 0; branch_idx < params.nr_loops; branch_idx++ )
    1740             :     {
    1741        1744 :         pCoef_a = &params.pT60_filter_coeff_fx[2 * nr_coefs * branch_idx + nr_coefs];
    1742        1744 :         pCoef_b = &params.pT60_filter_coeff_fx[2 * nr_coefs * branch_idx];
    1743             : 
    1744        1744 :         IF( NE_32( ( error = set_t60_filter( pState, branch_idx, nr_coefs, pCoef_a, pCoef_b ) ), IVAS_ERR_OK ) )
    1745             :         {
    1746           0 :             return error;
    1747             :         }
    1748             :     }
    1749             : 
    1750         218 :     *hReverb = pState;
    1751             : 
    1752         218 :     return IVAS_ERR_OK;
    1753             : }
    1754             : 
    1755             : 
    1756             : /*-------------------------------------------------------------------------
    1757             :  * ivas_reverb_close()
    1758             :  *
    1759             :  * Deallocate Crend reverberation handle
    1760             :  *------------------------------------------------------------------------*/
    1761             : 
    1762        4506 : void ivas_reverb_close_fx(
    1763             :     REVERB_HANDLE *hReverb_in /* i/o: Reverberator handle       */
    1764             : )
    1765             : {
    1766             :     REVERB_HANDLE hReverb;
    1767             :     Word16 loop_idx;
    1768             : 
    1769        4506 :     hReverb = *hReverb_in;
    1770             : 
    1771        4506 :     test();
    1772        4506 :     IF( hReverb_in == NULL || *hReverb_in == NULL )
    1773             :     {
    1774        4343 :         return;
    1775             :     }
    1776             : 
    1777        1467 :     FOR( loop_idx = 0; loop_idx < IVAS_REV_MAX_NR_BRANCHES; loop_idx++ )
    1778             :     {
    1779        1304 :         IF( hReverb->loop_delay_buffer_fx[loop_idx] != NULL )
    1780             :         {
    1781        1304 :             free( hReverb->loop_delay_buffer_fx[loop_idx] );
    1782        1304 :             hReverb->loop_delay_buffer_fx[loop_idx] = NULL;
    1783             :         }
    1784             :     }
    1785             : 
    1786         163 :     free( hReverb->pPredelay_buffer_fx );
    1787         163 :     hReverb->pPredelay_buffer_fx = NULL;
    1788             : 
    1789         163 :     free( *hReverb_in );
    1790         163 :     *hReverb_in = NULL;
    1791             : 
    1792         163 :     return;
    1793             : }
    1794             : 
    1795             : 
    1796             : /*-----------------------------------------------------------------------------------------*
    1797             :  * Function post_fft_filter()
    1798             :  *
    1799             :  *
    1800             :  *-----------------------------------------------------------------------------------------*/
    1801             : 
    1802      376823 : static void post_fft_filter_fx(
    1803             :     REVERB_HANDLE hReverb,
    1804             :     Word32 *input_L_fx,
    1805             :     Word32 *input_R_fx,
    1806             :     Word32 *buffer_L_fx,
    1807             :     Word32 *buffer_R_fx )
    1808             : {
    1809             : 
    1810      376823 :     IF( hReverb->do_corr_filter )
    1811             :     {
    1812      376823 :         ivas_reverb_t2f_f2t_in_fx( &hReverb->fft_filter_ols, input_L_fx, input_R_fx, buffer_L_fx, buffer_R_fx );
    1813      376823 :         ivas_reverb_fft_filter_ComplexMul_fx( &hReverb->fft_filter_correl_0, buffer_L_fx );
    1814      376823 :         ivas_reverb_fft_filter_ComplexMul_fx( &hReverb->fft_filter_correl_1, buffer_R_fx );
    1815      376823 :         ivas_reverb_fft_filter_CrossMix_fx( buffer_L_fx, buffer_R_fx, hReverb->fft_filter_correl_0.fft_size );
    1816             :     }
    1817             :     ELSE
    1818             :     {
    1819           0 :         ivas_reverb_t2f_f2t_in_fx( &hReverb->fft_filter_ols, input_L_fx, input_R_fx, buffer_L_fx, buffer_R_fx );
    1820             :     }
    1821             : 
    1822      376823 :     ivas_reverb_fft_filter_ComplexMul_fx( &hReverb->fft_filter_color_0, buffer_L_fx );
    1823      376823 :     ivas_reverb_fft_filter_ComplexMul_fx( &hReverb->fft_filter_color_1, buffer_R_fx );
    1824      376823 :     ivas_reverb_t2f_f2t_out_fx( &hReverb->fft_filter_ols, buffer_L_fx, buffer_R_fx, input_L_fx, input_R_fx );
    1825             : 
    1826      376823 :     return;
    1827             : }
    1828             : 
    1829             : 
    1830             : /*-----------------------------------------------------------------------------------------*
    1831             :  * Function reverb_block()
    1832             :  *
    1833             :  * Input a block (mono) and calculate the 2 output blocks.
    1834             :  *-----------------------------------------------------------------------------------------*/
    1835             : 
    1836      376823 : static void reverb_block_fx(
    1837             :     REVERB_HANDLE hReverb,
    1838             :     Word32 *pInput_fx, /*Q11*/
    1839             :     Word32 *pOut0_fx,
    1840             :     Word32 *pOut1_fx )
    1841             : 
    1842             : {
    1843      376823 :     UWord16 nr_branches = hReverb->nr_of_branches;
    1844      376823 :     UWord16 bsize = hReverb->full_block_size;
    1845      376823 :     UWord16 inner_bsize = INNER_BLK_SIZE;
    1846             :     UWord16 i, j, k, ns, branch_idx, blk_idx, start_sample_idx;
    1847             :     Word32 *pFFT_buf[2], FFT_buf_1[RV_FILTER_MAX_FFT_SIZE], FFT_buf_2[RV_FILTER_MAX_FFT_SIZE];
    1848             :     Word32 pFeedback_input_fx[INNER_BLK_SIZE];
    1849             :     Word32 pTemp_fx[INNER_BLK_SIZE];
    1850             :     Word32 *ppOutput_fx[IVAS_REV_MAX_NR_BRANCHES];
    1851             :     Word32 Output_fx[IVAS_REV_MAX_NR_BRANCHES][INNER_BLK_SIZE];
    1852             :     Word16 shift;
    1853      376823 :     move16();
    1854      376823 :     move16();
    1855      376823 :     move16();
    1856             : 
    1857      376823 :     pFFT_buf[0] = &FFT_buf_1[0];
    1858      376823 :     pFFT_buf[1] = &FFT_buf_2[0];
    1859             : 
    1860     3391407 :     FOR( branch_idx = 0; branch_idx < nr_branches; branch_idx++ )
    1861             :     {
    1862     3014584 :         ppOutput_fx[branch_idx] = (Word32 *) Output_fx + i_mult( branch_idx, inner_bsize );
    1863             :     }
    1864             : 
    1865     1493759 :     FOR( k = 0; k < bsize; k += inner_bsize )
    1866             :     {
    1867     1116936 :         Word32 *pO0 = &pOut0_fx[k];
    1868     1116936 :         Word32 *pO1 = &pOut1_fx[k];
    1869    90471816 :         FOR( i = 0; i < inner_bsize; i++ )
    1870             :         {
    1871    89354880 :             pO0[i] = 0;
    1872    89354880 :             move16();
    1873    89354880 :             pO1[i] = 0;
    1874    89354880 :             move16();
    1875             :         }
    1876             : 
    1877             :         /* feedback network: */
    1878    10052424 :         FOR( i = 0; i < nr_branches; i++ )
    1879             :         {
    1880     8935488 :             Word32 *pOutput_i_fx = &ppOutput_fx[i][0];
    1881     8935488 :             Word16 mixer_0_i = hReverb->mixer_fx[0][i];
    1882     8935488 :             move16();
    1883     8935488 :             Word16 mixer_1_i = hReverb->mixer_fx[1][i];
    1884     8935488 :             move16();
    1885             :             /* output and feedback are same, get sample from delay line ... */
    1886     8935488 :             ivas_rev_delay_line_get_sample_blk_fx( &( hReverb->delay_line[i] ), inner_bsize, pTemp_fx );
    1887     8935488 :             ivas_reverb_iir_filt_2taps_feed_blk_fx( &( hReverb->t60[i] ), inner_bsize, pTemp_fx, ppOutput_fx[i] );
    1888   723774528 :             FOR( ns = 0; ns < inner_bsize; ns++ )
    1889             :             {
    1890   714839040 :                 pO0[ns] = L_add_sat( imult3216( pOutput_i_fx[ns], mixer_0_i ), pO0[ns] ); /* mixer ch 0 */
    1891   714839040 :                 move32();
    1892   714839040 :                 pO1[ns] = L_add_sat( imult3216( pOutput_i_fx[ns], mixer_1_i ), pO1[ns] ); /* mixer ch 1 */
    1893   714839040 :                 move32();
    1894             :             }
    1895             :         }
    1896             : 
    1897    10052424 :         FOR( i = 0; i < nr_branches; i++ )
    1898             :         {
    1899     8935488 :             Word32 *pIn = &pInput_fx[k];
    1900             : 
    1901   723774528 :             FOR( ns = 0; ns < inner_bsize; ns++ )
    1902             :             {
    1903   714839040 :                 pFeedback_input_fx[ns] = L_shr( pIn[ns], 3 ); // to make the Qfactor similar to pOutput
    1904   714839040 :                 move32();
    1905             :             }
    1906             : 
    1907    80419392 :             FOR( j = 0; j < nr_branches; j++ )
    1908             :             {
    1909    71483904 :                 Word32 gain_matrix_j_i = hReverb->gain_matrix_fx[j][i]; // Q31
    1910    71483904 :                 move32();
    1911    71483904 :                 Word32 *pOutput = &ppOutput_fx[j][0];
    1912  5790196224 :                 FOR( ns = 0; ns < inner_bsize; ns++ )
    1913             :                 {
    1914  5718712320 :                     pFeedback_input_fx[ns] = ( L_add_sat( Mpy_32_32( gain_matrix_j_i, pOutput[ns] ), pFeedback_input_fx[ns] ) );
    1915  5718712320 :                     move32();
    1916             :                 }
    1917             :             }
    1918             : 
    1919     8935488 :             ivas_rev_delay_line_feed_sample_blk_fx( &( hReverb->delay_line[i] ), inner_bsize, pFeedback_input_fx );
    1920             :         }
    1921             :     }
    1922             : 
    1923      376823 :     shift = s_min( L_norm_arr( pOut0_fx, hReverb->fft_filter_ols.block_size ), L_norm_arr( pOut1_fx, hReverb->fft_filter_ols.block_size ) );
    1924             : 
    1925      376823 :     IF( LT_16( shift, hReverb->fft_filter_ols.prev_shift ) )
    1926             :     {
    1927        1280 :         scale_sig32( pOut0_fx, hReverb->fft_filter_ols.block_size, shift );
    1928        1280 :         scale_sig32( pOut1_fx, hReverb->fft_filter_ols.block_size, shift );
    1929        1280 :         scale_sig32( hReverb->fft_filter_ols.fft_history_L_fx, hReverb->fft_filter_ols.hist_size, sub( shift, hReverb->fft_filter_ols.prev_shift ) );
    1930        1280 :         scale_sig32( hReverb->fft_filter_ols.fft_history_R_fx, hReverb->fft_filter_ols.hist_size, sub( shift, hReverb->fft_filter_ols.prev_shift ) );
    1931             : 
    1932        1280 :         hReverb->fft_filter_ols.prev_shift = shift;
    1933        1280 :         move16();
    1934             :     }
    1935             :     ELSE
    1936             :     {
    1937      375543 :         scale_sig32( pOut0_fx, hReverb->fft_filter_ols.block_size, hReverb->fft_filter_ols.prev_shift );
    1938      375543 :         scale_sig32( pOut1_fx, hReverb->fft_filter_ols.block_size, hReverb->fft_filter_ols.prev_shift );
    1939             : 
    1940      375543 :         shift = hReverb->fft_filter_ols.prev_shift;
    1941      375543 :         move16();
    1942             :     }
    1943             : 
    1944             :     Word16 r_shift;
    1945      376823 :     r_shift = add( find_guarded_bits_fx( hReverb->fft_filter_ols.fft_size ), 1 );
    1946             :     // Applying guard bits for the DoRTFT inside the post_fft_filter function
    1947    89731703 :     FOR( k = 0; k < hReverb->fft_filter_ols.block_size; k++ )
    1948             :     {
    1949    89354880 :         pOut0_fx[k] = (Word32) L_shr( pOut0_fx[k], ( r_shift ) );
    1950    89354880 :         move32();
    1951    89354880 :         pOut1_fx[k] = (Word32) L_shr( pOut1_fx[k], ( r_shift ) );
    1952    89354880 :         move32();
    1953             :     }
    1954             :     /* Applying FFT filter to each sub-frame */
    1955      753646 :     FOR( blk_idx = 0; blk_idx < hReverb->num_fft_subblocks; blk_idx++ )
    1956             :     {
    1957      376823 :         start_sample_idx = imult1616( blk_idx, hReverb->fft_subblock_size );
    1958      376823 :         post_fft_filter_fx( hReverb, pOut0_fx + start_sample_idx, pOut1_fx + start_sample_idx, pFFT_buf[0], pFFT_buf[1] );
    1959             :     }
    1960             : 
    1961    89731703 :     FOR( k = 0; k < hReverb->fft_filter_ols.block_size; k++ )
    1962             :     {
    1963    89354880 :         pOut0_fx[k] = (Word32) L_shl( pOut0_fx[k], sub( 1, shift ) );
    1964    89354880 :         move32();
    1965    89354880 :         pOut1_fx[k] = (Word32) L_shl( pOut1_fx[k], sub( 1, shift ) );
    1966    89354880 :         move32();
    1967             :     }
    1968             : 
    1969      376823 :     return;
    1970             : }
    1971             : 
    1972             : 
    1973             : /*-----------------------------------------------------------------------------------------*
    1974             :  * Function downmix_input_block()
    1975             :  *
    1976             :  * Downmix input to mono, taking also DSR gain into account
    1977             :  *-----------------------------------------------------------------------------------------*/
    1978             : 
    1979      376823 : static ivas_error downmix_input_block_fx(
    1980             :     const REVERB_HANDLE hReverb,
    1981             :     Word32 *pcm_in[], /* i Q11 : the input PCM audio   */
    1982             :     const AUDIO_CONFIG input_audio_config,
    1983             :     Word32 *pPcm_out, /* o Q11 : the output PCM audio   */
    1984             :     const Word16 input_offset )
    1985             : {
    1986             :     Word16 i, s, nchan_transport;
    1987      376823 :     Word32 dmx_gain_fx = hReverb->dmx_gain_fx;
    1988      376823 :     move32();
    1989             : 
    1990      376823 :     SWITCH( input_audio_config )
    1991             :     {
    1992      317303 :         case IVAS_AUDIO_CONFIG_STEREO:
    1993             :         case IVAS_AUDIO_CONFIG_5_1:
    1994             :         case IVAS_AUDIO_CONFIG_7_1:
    1995             :         case IVAS_AUDIO_CONFIG_5_1_2:
    1996             :         case IVAS_AUDIO_CONFIG_5_1_4:
    1997             :         case IVAS_AUDIO_CONFIG_7_1_4:
    1998             :         case IVAS_AUDIO_CONFIG_ISM1:
    1999             :         case IVAS_AUDIO_CONFIG_ISM2:
    2000             :         case IVAS_AUDIO_CONFIG_ISM3:
    2001             :         case IVAS_AUDIO_CONFIG_ISM4:
    2002             :         {
    2003      317303 :             nchan_transport = audioCfg2channels( input_audio_config );
    2004    75515383 :             FOR( s = 0; s < hReverb->full_block_size; s++ )
    2005             :             {
    2006    75198080 :                 Word32 temp = pcm_in[0][add( input_offset, s )];
    2007    75198080 :                 move32();
    2008   203219840 :                 FOR( i = 1; i < nchan_transport; i++ )
    2009             :                 {
    2010   128021760 :                     temp = L_add( temp, pcm_in[i][add( input_offset, s )] );
    2011             :                 }
    2012    75198080 :                 pPcm_out[s] = W_extract_h( W_shl( W_mult0_32_32( dmx_gain_fx, temp ), 9 ) ); // ( Q23 + Q11 + Q9 ) - 32 = Q11
    2013    75198080 :                 move32();
    2014             :             }
    2015      317303 :             BREAK;
    2016             :         }
    2017       59520 :         case IVAS_AUDIO_CONFIG_MONO: /* ~'ZOA_1' */
    2018             :         case IVAS_AUDIO_CONFIG_FOA:
    2019             :         case IVAS_AUDIO_CONFIG_HOA2:
    2020             :         case IVAS_AUDIO_CONFIG_HOA3:
    2021             :         {
    2022    14216320 :             FOR( s = 0; s < hReverb->full_block_size; s++ )
    2023             :             {
    2024    14156800 :                 pPcm_out[s] = Mpy_32_32( dmx_gain_fx, L_shl_sat( pcm_in[0][input_offset + s], 8 ) ); //(Q23 + Q11 + Q8) - 31 = Q11
    2025    14156800 :                 move32();
    2026             :             }
    2027       59520 :             BREAK;
    2028             :         }
    2029           0 :         default:
    2030           0 :             return IVAS_ERROR( IVAS_ERR_INTERNAL_FATAL, "Unsupported input format for reverb" );
    2031             :     }
    2032             : 
    2033      376823 :     return IVAS_ERR_OK;
    2034             : }
    2035             : 
    2036             : 
    2037             : /*-----------------------------------------------------------------------------------------*
    2038             :  * Function predelay_block()
    2039             :  *
    2040             :  * Perform a predelay
    2041             :  *-----------------------------------------------------------------------------------------*/
    2042             : 
    2043      376823 : static void predelay_block_fx(
    2044             :     const REVERB_HANDLE hReverb,
    2045             :     Word32 *pInput, /*Q11*/
    2046             :     Word32 *pOutput /*Q11*/ )
    2047             : {
    2048             :     UWord16 i, idx, n_samples, blk_size;
    2049      376823 :     UWord16 max_blk_size = (UWord16) hReverb->predelay_line.Delay;
    2050             : 
    2051      376823 :     IF( LT_32( max_blk_size, 2 ) )
    2052             :     {
    2053           0 :         IF( max_blk_size == 0 ) /* zero-length delay line: just copy the data from input to output */
    2054             :         {
    2055           0 :             FOR( i = 0; i < hReverb->full_block_size; i++ )
    2056             :             {
    2057           0 :                 pOutput[i] = pInput[i]; // Q11
    2058           0 :                 move32();
    2059             :             }
    2060             :         }
    2061             :         ELSE /* 1-sample length delay line: feed the data sample-by-sample */
    2062             :         {
    2063           0 :             FOR( i = 0; i < hReverb->full_block_size; i++ )
    2064             :             {
    2065           0 :                 pOutput[i] = ivas_rev_delay_line_get_sample_fx( &( hReverb->predelay_line ) ); // Q11
    2066           0 :                 move32();
    2067           0 :                 ivas_rev_delay_line_feed_sample_fx( &( hReverb->predelay_line ), pInput[i] );
    2068             :             }
    2069             :         }
    2070             :     }
    2071             :     ELSE /* multiple-sample length delay line: use block processing */
    2072             :     {
    2073      376823 :         idx = 0;
    2074      376823 :         move16();
    2075      376823 :         n_samples = hReverb->full_block_size;
    2076     2260938 :         WHILE( n_samples > 0 )
    2077             :         {
    2078     1884115 :             blk_size = n_samples;
    2079     1884115 :             move16();
    2080     1884115 :             if ( GT_16( blk_size, max_blk_size ) )
    2081             :             {
    2082     1507292 :                 blk_size = max_blk_size;
    2083     1507292 :                 move16();
    2084             :             }
    2085     1884115 :             ivas_rev_delay_line_get_sample_blk_fx( &( hReverb->predelay_line ), blk_size, &pOutput[idx] );
    2086     1884115 :             ivas_rev_delay_line_feed_sample_blk_fx( &( hReverb->predelay_line ), blk_size, &pInput[idx] );
    2087     1884115 :             idx = (UWord16) UL_addNsD( idx, blk_size );
    2088     1884115 :             move16();
    2089     1884115 :             n_samples = (UWord16) UL_subNsD( n_samples, blk_size );
    2090     1884115 :             move16();
    2091             :         }
    2092             :     }
    2093             : 
    2094      376823 :     return;
    2095             : }
    2096             : 
    2097             : 
    2098             : /*-----------------------------------------------------------------------------------------*
    2099             :  * Function mix_output_block()
    2100             :  *
    2101             :  * mix one block of *pInL and *pInR samples into *pOutL and *pOutL respectively
    2102             :  *-----------------------------------------------------------------------------------------*/
    2103             : 
    2104      103880 : static void mix_output_block_fx(
    2105             :     const REVERB_HANDLE hReverb,
    2106             :     const Word32 *pInL,
    2107             :     const Word32 *pInR,
    2108             :     Word32 *pOutL,
    2109             :     Word32 *pOutR )
    2110             : {
    2111             :     UWord16 i;
    2112             : 
    2113    24100680 :     FOR( i = 0; i < hReverb->full_block_size; i++ )
    2114             :     {
    2115    23996800 :         pOutL[i] = L_add( pInL[i], ( L_shr( pOutL[i], 2 ) ) );
    2116    23996800 :         move32();
    2117    23996800 :         pOutR[i] = L_add( pInR[i], ( L_shr( pOutR[i], 2 ) ) );
    2118    23996800 :         move32();
    2119             :     }
    2120             : 
    2121      103880 :     return;
    2122             : }
    2123             : 
    2124             : 
    2125             : /*-----------------------------------------------------------------------------------------*
    2126             :  * ivas_reverb_process()
    2127             :  *
    2128             :  * Process the input PCM audio into output PCM audio, applying reverb
    2129             :  *-----------------------------------------------------------------------------------------*/
    2130             : 
    2131      376823 : ivas_error ivas_reverb_process_fx(
    2132             :     const REVERB_HANDLE hReverb,           /* i  : Reverberator handle                      */
    2133             :     const AUDIO_CONFIG input_audio_config, /* i  : reverb. input audio configuration        */
    2134             :     const Word16 mix_signals,              /* i  : add reverb to output signal              */
    2135             :     Word32 *pcm_in_fx[],                   /* i  : the PCM audio to apply reverb on, Q11    */
    2136             :     Word32 *pcm_out_fx[],                  /* o  : the PCM audio with reverb applied, Q11   */
    2137             :     const Word16 i_ts                      /* i  : subframe index                           */
    2138             : )
    2139             : {
    2140             :     Word32 tmp0_fx[L_FRAME48k / MAX_PARAM_SPATIAL_SUBFRAMES], tmp1_fx[L_FRAME48k / MAX_PARAM_SPATIAL_SUBFRAMES], tmp2_fx[L_FRAME48k / MAX_PARAM_SPATIAL_SUBFRAMES];
    2141             :     ivas_error error;
    2142             : 
    2143      376823 :     IF( NE_32( ( error = downmix_input_block_fx( hReverb, pcm_in_fx, input_audio_config, tmp1_fx, i_ts * hReverb->full_block_size ) ), IVAS_ERR_OK ) )
    2144             :     {
    2145           0 :         return error;
    2146             :     }
    2147             : 
    2148      376823 :     predelay_block_fx( hReverb, tmp1_fx, tmp0_fx );
    2149             : 
    2150      376823 :     reverb_block_fx( hReverb, tmp0_fx, tmp1_fx, tmp2_fx );
    2151             : 
    2152      376823 :     IF( mix_signals )
    2153             :     {
    2154      103880 :         mix_output_block_fx( hReverb, tmp1_fx, tmp2_fx, &pcm_out_fx[0][i_ts * hReverb->full_block_size], &pcm_out_fx[1][i_ts * hReverb->full_block_size] );
    2155             :     }
    2156             :     ELSE
    2157             :     {
    2158      272943 :         Copy32( tmp1_fx, &pcm_out_fx[0][i_mult( i_ts, hReverb->full_block_size )], hReverb->full_block_size );
    2159      272943 :         Copy32( tmp2_fx, &pcm_out_fx[1][i_mult( i_ts, hReverb->full_block_size )], hReverb->full_block_size );
    2160             :     }
    2161             : 
    2162      376823 :     return IVAS_ERR_OK;
    2163             : }
    2164             : 
    2165             : 
    2166             : /*-------------------------------------------------------------------------
    2167             :  * ivas_binaural_reverb_processSubFrame()
    2168             :  *
    2169             :  * Compute the reverberation - room effect
    2170             :  *------------------------------------------------------------------------*/
    2171             : 
    2172      220175 : void ivas_binaural_reverb_processSubframe_fx(
    2173             :     REVERB_STRUCT_HANDLE hReverb,                                      /* i/o: binaural reverb handle      */
    2174             :     const Word16 numInChannels,                                        /* i  : num inputs to be processed  */
    2175             :     const Word16 numSlots,                                             /* i  : number of slots to be processed    */
    2176             :     Word32 inReal[][CLDFB_SLOTS_PER_SUBFRAME][CLDFB_NO_CHANNELS_MAX],  /* i (Q_in) : input CLDFB data real, Comment: This change swaps two first dimensions as first dimension is not constant. */
    2177             :     Word32 inImag[][CLDFB_SLOTS_PER_SUBFRAME][CLDFB_NO_CHANNELS_MAX],  /* i (Q_in) : input CLDFB data imag       */
    2178             :     Word32 outReal[][CLDFB_SLOTS_PER_SUBFRAME][CLDFB_NO_CHANNELS_MAX], /* o (Q_in) : output CLDFB data real      */
    2179             :     Word32 outImag[][CLDFB_SLOTS_PER_SUBFRAME][CLDFB_NO_CHANNELS_MAX]  /* o (Q_in) : output CLDFB data imag      */
    2180             : )
    2181             : {
    2182             :     /* Declare the required variables */
    2183             :     Word16 idx, bin, ch, sample, invertSampleIndex, tapIdx, *phaseShiftTypePr;
    2184             :     Word32 **tapRealPr_fx, **tapImagPr_fx;
    2185      220175 :     push_wmops( "binaural_reverb" );
    2186             : 
    2187             :     /* 1) Rotate the data in the loop buffer of the reverberator.
    2188             :      * Notice that the audio at the loop buffers is at time-inverted order
    2189             :      * for convolution purposes later on. */
    2190    10248075 :     FOR( bin = 0; bin < hReverb->numBins; bin++ )
    2191             :     {
    2192             :         /* Move the data forwards by blockSize (i.e. by the frame size of 16 CLDFB slots) */
    2193    10027900 :         Copy32( hReverb->loopBufReal_fx[bin], hReverb->loopBufReal_fx[bin] + numSlots, hReverb->loopBufLength[bin] );
    2194    10027900 :         Copy32( hReverb->loopBufImag_fx[bin], hReverb->loopBufImag_fx[bin] + numSlots, hReverb->loopBufLength[bin] );
    2195             : 
    2196             :         /* Add the data from the end of the loop to the beginning, with an attenuation factor
    2197             :          * according to RT60. This procedure generates an IIR decaying response. The response
    2198             :          * is decorrelated later on. */
    2199    10027900 :         v_multc_fixed( hReverb->loopBufReal_fx[bin] + hReverb->loopBufLength[bin], hReverb->loopAttenuationFactor_fx[bin], hReverb->loopBufReal_fx[bin], numSlots );
    2200    10027900 :         v_multc_fixed( hReverb->loopBufImag_fx[bin] + hReverb->loopBufLength[bin], hReverb->loopAttenuationFactor_fx[bin], hReverb->loopBufImag_fx[bin], numSlots );
    2201             :     }
    2202             : 
    2203             :     /* 2) Apply the determined pre-delay to the input audio, and add the delayed audio to the loop. */
    2204      220175 :     idx = hReverb->preDelayBufferIndex;
    2205     1094151 :     FOR( sample = 0; sample < numSlots; sample++ )
    2206             :     {
    2207      873976 :         invertSampleIndex = sub( sub( numSlots, sample ), 1 );
    2208             : 
    2209    40657696 :         FOR( bin = 0; bin < hReverb->numBins; bin++ )
    2210             :         {
    2211             :             /* Add from pre-delay buffer a sample to the loop buffer, in a time-inverted order.
    2212             :              * Also apply the spectral gains determined for the reverberation */
    2213    39783720 :             Word32 temp_1 = Mpy_32_32( hReverb->preDelayBufferReal_fx[idx][bin], hReverb->reverbEqGains_fx[bin] );              /*Q_in*/
    2214    39783720 :             Word32 temp_2 = Mpy_32_32( hReverb->preDelayBufferImag_fx[idx][bin], hReverb->reverbEqGains_fx[bin] );              /*Q_in*/
    2215    39783720 :             hReverb->loopBufReal_fx[bin][invertSampleIndex] = L_add( hReverb->loopBufReal_fx[bin][invertSampleIndex], temp_1 ); /*Q_in*/
    2216    39783720 :             move32();
    2217    39783720 :             hReverb->loopBufImag_fx[bin][invertSampleIndex] = L_add( hReverb->loopBufImag_fx[bin][invertSampleIndex], temp_2 ); /*Q_in*/
    2218    39783720 :             move32();
    2219    39783720 :             hReverb->preDelayBufferReal_fx[idx][bin] = 0;
    2220    39783720 :             move32();
    2221    39783720 :             hReverb->preDelayBufferImag_fx[idx][bin] = 0;
    2222    39783720 :             move32();
    2223             :         }
    2224             : 
    2225             :         /* Add every second input channel as is to the pre-delay buffer, and every second input channel with
    2226             :          * 90 degrees phase shift to reduce energy imbalances between coherent and incoherent sounds */
    2227     2643743 :         FOR( ch = 0; ch < numInChannels; ch++ )
    2228             :         {
    2229     1769767 :             IF( s_and( ch, 1 ) )
    2230             :             {
    2231      880056 :                 v_add_fixed_no_hdrm( hReverb->preDelayBufferReal_fx[idx], inReal[ch][sample], hReverb->preDelayBufferReal_fx[idx], hReverb->numBins );
    2232      880056 :                 v_add_fixed_no_hdrm( hReverb->preDelayBufferImag_fx[idx], inImag[ch][sample], hReverb->preDelayBufferImag_fx[idx], hReverb->numBins );
    2233             :             }
    2234             :             ELSE
    2235             :             {
    2236      889711 :                 v_sub_fixed_no_hdrm( hReverb->preDelayBufferReal_fx[idx], inImag[ch][sample], hReverb->preDelayBufferReal_fx[idx], hReverb->numBins );
    2237      889711 :                 v_add_fixed_no_hdrm( hReverb->preDelayBufferImag_fx[idx], inReal[ch][sample], hReverb->preDelayBufferImag_fx[idx], hReverb->numBins );
    2238             :             }
    2239             :         }
    2240      873976 :         idx = add( idx, 1 ) % hReverb->preDelayBufferLength;
    2241      873976 :         move16();
    2242             :     }
    2243      220175 :     hReverb->preDelayBufferIndex = idx;
    2244      220175 :     move16();
    2245             : 
    2246             :     /* 3) Perform the filtering/decorrelating, using complex and sparse FIR filtering */
    2247    10248075 :     FOR( bin = 0; bin < hReverb->numBins; bin++ )
    2248             :     {
    2249    30083700 :         FOR( ch = 0; ch < BINAURAL_CHANNELS; ch++ )
    2250             :         {
    2251             :             /* These tap pointers have been determined to point to the loop buffer at sparse locations */
    2252    20055800 :             tapRealPr_fx = hReverb->tapPointersReal_fx[bin][ch];
    2253    20055800 :             tapImagPr_fx = hReverb->tapPointersImag_fx[bin][ch];
    2254             : 
    2255    20055800 :             phaseShiftTypePr = hReverb->tapPhaseShiftType[bin][ch];
    2256             : 
    2257             :             /* Flush output */
    2258    20055800 :             set32_fx( hReverb->outputBufferReal_fx[bin][ch], 0, numSlots );
    2259    20055800 :             set32_fx( hReverb->outputBufferImag_fx[bin][ch], 0, numSlots );
    2260             : 
    2261             :             /* Add from temporally decaying sparse tap locations the audio to the output. */
    2262   490788149 :             FOR( tapIdx = 0; tapIdx < hReverb->taps[bin][ch]; tapIdx++ )
    2263             :             {
    2264   470732349 :                 SWITCH( phaseShiftTypePr[tapIdx] )
    2265             :                 {
    2266   115451846 :                     case 0: /* 0 degrees phase */
    2267   115451846 :                         v_add_fixed_no_hdrm( hReverb->outputBufferReal_fx[bin][ch], tapRealPr_fx[tapIdx], hReverb->outputBufferReal_fx[bin][ch], numSlots );
    2268   115451846 :                         v_add_fixed_no_hdrm( hReverb->outputBufferImag_fx[bin][ch], tapImagPr_fx[tapIdx], hReverb->outputBufferImag_fx[bin][ch], numSlots );
    2269   115451846 :                         BREAK;
    2270   123146013 :                     case 1: /* 90 degrees phase */
    2271   123146013 :                         v_sub_fixed_no_hdrm( hReverb->outputBufferReal_fx[bin][ch], tapImagPr_fx[tapIdx], hReverb->outputBufferReal_fx[bin][ch], numSlots );
    2272   123146013 :                         v_add_fixed_no_hdrm( hReverb->outputBufferImag_fx[bin][ch], tapRealPr_fx[tapIdx], hReverb->outputBufferImag_fx[bin][ch], numSlots );
    2273   123146013 :                         BREAK;
    2274   117691692 :                     case 2: /* 180 degrees phase */
    2275   117691692 :                         v_sub_fixed_no_hdrm( hReverb->outputBufferReal_fx[bin][ch], tapRealPr_fx[tapIdx], hReverb->outputBufferReal_fx[bin][ch], numSlots );
    2276   117691692 :                         v_sub_fixed_no_hdrm( hReverb->outputBufferImag_fx[bin][ch], tapImagPr_fx[tapIdx], hReverb->outputBufferImag_fx[bin][ch], numSlots );
    2277   117691692 :                         BREAK;
    2278   114442798 :                     default: /* 270 degrees phase */
    2279   114442798 :                         v_add_fixed_no_hdrm( hReverb->outputBufferReal_fx[bin][ch], tapImagPr_fx[tapIdx], hReverb->outputBufferReal_fx[bin][ch], numSlots );
    2280   114442798 :                         v_sub_fixed_no_hdrm( hReverb->outputBufferImag_fx[bin][ch], tapRealPr_fx[tapIdx], hReverb->outputBufferImag_fx[bin][ch], numSlots );
    2281   114442798 :                         BREAK;
    2282             :                 }
    2283             :             }
    2284             :         }
    2285             : 
    2286             :         /* Generate diffuse field binaural coherence by mixing the incoherent reverberated channels with pre-defined gains */
    2287    10027900 :         IF( LE_16( bin, hReverb->highestBinauralCoherenceBin ) )
    2288             :         {
    2289     1491575 :             IF( hReverb->useBinauralCoherence )
    2290             :             {
    2291     7412767 :                 FOR( sample = 0; sample < numSlots; sample++ )
    2292             :                 {
    2293             :                     Word32 leftRe_fx, rightRe_fx, leftIm_fx, rightIm_fx;
    2294             : 
    2295     5921192 :                     leftRe_fx = Madd_32_32( Mpy_32_32( hReverb->binauralCoherenceDirectGains_fx[bin], hReverb->outputBufferReal_fx[bin][0][sample] ),
    2296     5921192 :                                             hReverb->binauralCoherenceCrossmixGains_fx[bin], hReverb->outputBufferReal_fx[bin][1][sample] ); // Q_in
    2297     5921192 :                     rightRe_fx = Madd_32_32( Mpy_32_32( hReverb->binauralCoherenceDirectGains_fx[bin], hReverb->outputBufferReal_fx[bin][1][sample] ),
    2298     5921192 :                                              hReverb->binauralCoherenceCrossmixGains_fx[bin], hReverb->outputBufferReal_fx[bin][0][sample] ); // Q_in
    2299     5921192 :                     leftIm_fx = Madd_32_32( Mpy_32_32( hReverb->binauralCoherenceDirectGains_fx[bin], hReverb->outputBufferImag_fx[bin][0][sample] ),
    2300     5921192 :                                             hReverb->binauralCoherenceCrossmixGains_fx[bin], hReverb->outputBufferImag_fx[bin][1][sample] ); // Q_in
    2301     5921192 :                     rightIm_fx = Madd_32_32( Mpy_32_32( hReverb->binauralCoherenceDirectGains_fx[bin], hReverb->outputBufferImag_fx[bin][1][sample] ),
    2302     5921192 :                                              hReverb->binauralCoherenceCrossmixGains_fx[bin], hReverb->outputBufferImag_fx[bin][0][sample] ); // Q_in
    2303             : 
    2304     5921192 :                     hReverb->outputBufferReal_fx[bin][0][sample] = leftRe_fx; // Q_in
    2305     5921192 :                     move32();
    2306     5921192 :                     hReverb->outputBufferReal_fx[bin][1][sample] = rightRe_fx; // Q_in
    2307     5921192 :                     move32();
    2308     5921192 :                     hReverb->outputBufferImag_fx[bin][0][sample] = leftIm_fx; // Q_in
    2309     5921192 :                     move32();
    2310     5921192 :                     hReverb->outputBufferImag_fx[bin][1][sample] = rightIm_fx; // Q_in
    2311     5921192 :                     move32();
    2312             :                 }
    2313             :             }
    2314             :         }
    2315             :     }
    2316             : 
    2317             :     /* 4) Write data to output */
    2318      660525 :     FOR( ch = 0; ch < BINAURAL_CHANNELS; ch++ )
    2319             :     {
    2320     2188302 :         FOR( sample = 0; sample < numSlots; sample++ )
    2321             :         {
    2322             :             /* Audio was in the temporally inverted order for convolution, re-invert audio to output */
    2323     1747952 :             invertSampleIndex = sub( sub( numSlots, sample ), 1 );
    2324             : 
    2325    81315392 :             FOR( bin = 0; bin < hReverb->numBins; bin++ )
    2326             :             {
    2327    79567440 :                 outReal[ch][sample][bin] = hReverb->outputBufferReal_fx[bin][ch][invertSampleIndex]; // Q_in
    2328    79567440 :                 move32();
    2329    79567440 :                 outImag[ch][sample][bin] = hReverb->outputBufferImag_fx[bin][ch][invertSampleIndex]; // Q_in
    2330    79567440 :                 move32();
    2331             :             }
    2332    27057632 :             FOR( ; bin < CLDFB_NO_CHANNELS_MAX; bin++ )
    2333             :             {
    2334    25309680 :                 outReal[ch][sample][bin] = 0;
    2335    25309680 :                 move32();
    2336    25309680 :                 outImag[ch][sample][bin] = 0;
    2337    25309680 :                 move32();
    2338             :             }
    2339             :         }
    2340             :     }
    2341             : 
    2342      220175 :     pop_wmops();
    2343      220175 :     return;
    2344             : }
    2345             : 
    2346             : 
    2347             : /*-------------------------------------------------------------------------
    2348             :  * ivas_binaural_reverb_open()
    2349             :  *
    2350             :  * Allocate and initialize binaural room reverberator handle
    2351             :  *------------------------------------------------------------------------*/
    2352             : 
    2353         477 : static ivas_error ivas_binaural_reverb_open_fx(
    2354             :     REVERB_STRUCT_HANDLE *hReverbPr,    /* i/o: binaural reverb handle                                  */
    2355             :     const Word16 numBins,               /* i  : Q0 number of CLDFB bins                                    */
    2356             :     const Word16 numCldfbSlotsPerFrame, /* i  : Q0 number of CLDFB slots per frame                         */
    2357             :     const Word32 sampling_rate,         /* i  : Q0 sampling rate                                           */
    2358             :     const Word32 *revTimes_fx,          /* i  : Q26 reverberation times T60 for each CLDFB bin in seconds   */
    2359             :     const Word32 *revEnes_fx,           /* i  : Q31 spectrum for reverberated sound at each CLDFB bin       */
    2360             :     const Word16 preDelay               /* i  : Q0 reverb pre-delay in CLDFB slots                         */
    2361             : )
    2362             : {
    2363             :     Word16 bin, chIdx, k, len, scale, tmp;
    2364             :     REVERB_STRUCT_HANDLE hReverb;
    2365             : 
    2366         477 :     IF( ( *hReverbPr = (REVERB_STRUCT_HANDLE) malloc( sizeof( REVERB_STRUCT ) ) ) == NULL )
    2367             :     {
    2368           0 :         return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for Binaural Reverberator\n" ) );
    2369             :     }
    2370             : 
    2371         477 :     hReverb = *hReverbPr;
    2372             : 
    2373         477 :     hReverb->useBinauralCoherence = 1;
    2374         477 :     move16();
    2375         477 :     hReverb->preDelayBufferLength = 1;
    2376         477 :     move16();
    2377         477 :     hReverb->preDelayBufferIndex = 0;
    2378         477 :     move16();
    2379             : 
    2380         477 :     hReverb->numBins = numBins;
    2381         477 :     move16();
    2382         477 :     hReverb->blockSize = numCldfbSlotsPerFrame;
    2383         477 :     move16();
    2384             : 
    2385       10494 :     FOR( k = 0; k < REVERB_PREDELAY_MAX + 1; k++ )
    2386             :     {
    2387       10017 :         set32_fx( hReverb->preDelayBufferReal_fx[k], 0, hReverb->numBins );
    2388       10017 :         set32_fx( hReverb->preDelayBufferImag_fx[k], 0, hReverb->numBins );
    2389             :     }
    2390             : 
    2391       20747 :     FOR( bin = 0; bin < hReverb->numBins; bin++ )
    2392             :     {
    2393             :         /* Loop Buffer */
    2394             : 
    2395       20270 :         tmp = BASOP_Util_Divide1616_Scale( 500, add( bin, 1 ), &scale );
    2396       20270 :         tmp = shr( tmp, sub( 15, scale ) );
    2397       20270 :         hReverb->loopBufLengthMax[bin] = add( tmp, sub( CLDFB_NO_CHANNELS_MAX, bin ) );
    2398             :         // hReverb->loopBufLengthMax[bin] = (Word16) ( 500 / ( 1 + bin ) + ( CLDFB_NO_CHANNELS_MAX - bin ) );
    2399             : 
    2400       20270 :         len = add( hReverb->loopBufLengthMax[bin], hReverb->blockSize );
    2401             : 
    2402       20270 :         IF( ( hReverb->loopBufReal_fx[bin] = (Word32 *) malloc( len * sizeof( Word32 ) ) ) == NULL )
    2403             :         {
    2404           0 :             return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for Binaural Reverberator\n" ) );
    2405             :         }
    2406             : 
    2407       20270 :         if ( ( hReverb->loopBufImag_fx[bin] = (Word32 *) malloc( len * sizeof( Word32 ) ) ) == NULL )
    2408             :         {
    2409           0 :             return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for Binaural Reverberator\n" ) );
    2410             :         }
    2411       20270 :         set32_fx( hReverb->loopBufReal_fx[bin], 0, len );
    2412       20270 :         set32_fx( hReverb->loopBufImag_fx[bin], 0, len );
    2413             : 
    2414             :         /* Determine loop buffer length. The following formula is manually tuned to generate sufficiently long
    2415             :          * but not excessively long loops to generate reverberation. */
    2416             :         /* Note: the resulted length is very sensitive to the precision of the constants below (e.g. 1.45 vs. 1.45f) */
    2417             :         // hReverb->loopBufLength[bin] = (int16_t) ( 1.45 * (int16_t) ( revTimes[bin] * 150.0 ) + 1 );
    2418       20270 :         Word32 L_tmp_BufLength = L_shl( L_shr( Mpy_32_32( revTimes_fx[bin], 1258291200 /*150.0 in Q23*/ ), 18 ), 18 );
    2419       20270 :         L_tmp_BufLength = L_add( Mpy_32_32( 1556925645 /*1.45 in Q30*/, L_tmp_BufLength ), ONE_IN_Q17 );
    2420       20270 :         hReverb->loopBufLength[bin] = (Word16) L_shr( L_tmp_BufLength, 17 ); /*Q0*/
    2421       20270 :         move16();
    2422       20270 :         hReverb->loopBufLength[bin] = s_min( hReverb->loopBufLength[bin], hReverb->loopBufLengthMax[bin] );
    2423             : 
    2424             :         /* Sparse Filter Tap Locations */
    2425       60810 :         FOR( chIdx = 0; chIdx < BINAURAL_CHANNELS; chIdx++ )
    2426             :         {
    2427       40540 :             len = hReverb->loopBufLength[bin];
    2428       40540 :             move16();
    2429             : 
    2430       40540 :             IF( ( hReverb->tapPhaseShiftType[bin][chIdx] = (Word16 *) malloc( len * sizeof( Word16 ) ) ) == NULL )
    2431             :             {
    2432           0 :                 return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for Binaural Reverberator\n" ) );
    2433             :             }
    2434       40540 :             set16_fx( hReverb->tapPhaseShiftType[bin][chIdx], 0, len );
    2435             : 
    2436       40540 :             IF( ( hReverb->tapPointersReal_fx[bin][chIdx] = (Word32 **) malloc( len * sizeof( Word32 * ) ) ) == NULL )
    2437             :             {
    2438           0 :                 return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for Binaural Reverberator\n" ) );
    2439             :             }
    2440             : 
    2441       40540 :             IF( ( hReverb->tapPointersImag_fx[bin][chIdx] = (Word32 **) malloc( len * sizeof( Word32 * ) ) ) == NULL )
    2442             :             {
    2443           0 :                 return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for Binaural Reverberator\n" ) );
    2444             :             }
    2445             : 
    2446       40540 :             len = hReverb->blockSize;
    2447       40540 :             move16();
    2448       40540 :             IF( ( hReverb->outputBufferReal_fx[bin][chIdx] = (Word32 *) malloc( len * sizeof( Word32 ) ) ) == NULL )
    2449             :             {
    2450           0 :                 return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for Binaural Reverberator\n" ) );
    2451             :             }
    2452             : 
    2453       40540 :             IF( ( hReverb->outputBufferImag_fx[bin][chIdx] = (Word32 *) malloc( len * sizeof( Word32 ) ) ) == NULL )
    2454             :             {
    2455           0 :                 return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for Binaural Reverberator\n" ) );
    2456             :             }
    2457       40540 :             set32_fx( hReverb->outputBufferReal_fx[bin][chIdx], 0, len );
    2458       40540 :             set32_fx( hReverb->outputBufferImag_fx[bin][chIdx], 0, len );
    2459             :         }
    2460             :     }
    2461             : 
    2462         477 :     ivas_binaural_reverb_setReverbTimes_fx( hReverb, sampling_rate, revTimes_fx, revEnes_fx );
    2463             : 
    2464         477 :     ivas_binaural_reverb_setPreDelay_fx( hReverb, preDelay );
    2465             : 
    2466         477 :     return IVAS_ERR_OK;
    2467             : }
    2468             : 
    2469             : 
    2470             : /*-------------------------------------------------------------------------
    2471             :  * ivas_binaural_reverb_init()
    2472             :  *
    2473             :  * Initialize binaural room reverberator handle for FastConv renderer
    2474             :  *------------------------------------------------------------------------*/
    2475             : 
    2476         477 : ivas_error ivas_binaural_reverb_init_fx(
    2477             :     REVERB_STRUCT_HANDLE *hReverbPr,                      /* i/o: binaural reverb handle               */
    2478             :     const HRTFS_STATISTICS_HANDLE hHrtfStatistics,        /* i  : HRTF statistics handle               */
    2479             :     const Word16 numBins,                                 /* i  : number of CLDFB bins                 */
    2480             :     const Word16 numCldfbSlotsPerFrame,                   /* i  : number of CLDFB slots per frame      */
    2481             :     const IVAS_ROOM_ACOUSTICS_CONFIG_DATA *roomAcoustics, /* i/o: room acoustics parameters            */
    2482             :     const Word32 sampling_rate,                           /* i  : sampling rate                        */
    2483             :     const Word32 *defaultTimes,                           /* i  : default reverberation times          */
    2484             :     const Word32 *defaultEne,                             /* i  : default reverberation energies       */
    2485             :     Word32 *earlyEne                                      /* i/o: Early part energies to be modified   */
    2486             : )
    2487             : {
    2488             :     ivas_error error;
    2489             :     Word16 preDelay, bin;
    2490             :     Word32 revTimes[CLDFB_NO_CHANNELS_MAX];
    2491             :     Word32 revEne[CLDFB_NO_CHANNELS_MAX];
    2492             :     Word32 temp32;
    2493             : 
    2494         477 :     IF( roomAcoustics != NULL )
    2495             :     {
    2496         245 :         IF( ( error = ivas_reverb_prepare_cldfb_params( roomAcoustics, hHrtfStatistics, sampling_rate, revTimes, revEne ) ) != IVAS_ERR_OK )
    2497             :         {
    2498           0 :             return error;
    2499             :         }
    2500             : 
    2501             :         /* Convert preDelay from seconds to CLDFB slots as needed by binaural reverb */
    2502         245 :         temp32 = Mult_32_16( roomAcoustics->acousticPreDelay_fx, ( CLDFB_SLOTS_PER_SECOND >> 1 ) ); // Q11
    2503         245 :         preDelay = extract_l( L_shr( L_add( temp32, L_shl( 1, 10 ) ), 11 ) );                       // Q0
    2504             :     }
    2505             :     ELSE
    2506             :     {
    2507             : #ifdef FIX_1995_REVERB_INIT
    2508       11422 :         FOR( bin = 0; bin < numBins; bin++ )
    2509             : #else
    2510             :         FOR( bin = 0; bin < CLDFB_NO_CHANNELS_MAX; bin++ )
    2511             : #endif
    2512             :         {
    2513       11190 :             revTimes[bin] = defaultTimes[bin];
    2514       11190 :             move32();
    2515       11190 :             revEne[bin] = defaultEne[bin];
    2516       11190 :             move32();
    2517             :         }
    2518         232 :         preDelay = 10;
    2519             :     }
    2520             : 
    2521             : #ifdef FIX_1995_REVERB_INIT
    2522       20747 :     FOR( bin = 0; bin < numBins; bin++ )
    2523             : #else
    2524             :     FOR( bin = 0; bin < CLDFB_NO_CHANNELS_MAX; bin++ )
    2525             : #endif
    2526             :     {
    2527             :         /* Adjust the room effect parameters when the reverberation time is less than a threshold value, to avoid
    2528             :            spectral artefacts with the synthetic reverberator. */
    2529       20270 :         IF( LT_32( revTimes[bin], REV_TIME_THRESHOLD ) )
    2530             :         {
    2531             :             Word32 adjustedEarlyEne; /* Q28 to match earlyEne */
    2532             :             Word32 adjustedLateEne;  /* Q31 to match revEne */
    2533             :             Word32 adjustedRevTime;  /* Q26 to match revTime */
    2534             :             Word32 energyModifier;   /* Q30 as range is [0,1] */
    2535             :             Word16 scale;
    2536             : 
    2537             :             /* Adjust reverberation times, higher towards a threshold */
    2538             :             /* Float code equivalent is:
    2539             :              * revTimeModifier = fmaxf( 0.0f, 1.0f - ( revTimes[bin] / REV_TIME_THRESHOLD ) );
    2540             :              * adjustedRevTime = ( 1.0f - revTimeModifier ) * revTimes[bin];
    2541             :              * adjustedRevTime += revTimeModifier * ( revTimes[bin] + REV_TIME_THRESHOLD ) * 0.5f; */
    2542        4253 :             adjustedRevTime = L_shl( revTimes[bin], 5 ); /* Store revTimes[bin] in Q31 for multiplication as it is under REV_TIME_THRESHOLD, i.e., smaller than 1 */
    2543             :             /* Do revTimes[bin]^2 in Q31, result in Q31, multiply with constant in Q29, shift result from Q29 to Q26 for addition and result. */
    2544        4253 :             adjustedRevTime = L_add( L_shr( Mpy_32_32( Mpy_32_32( adjustedRevTime, adjustedRevTime ), Q29_0_5_PER_REV_TIME_THRESHOLD ), 3 ), Q26_REV_TIME_THRESHOLD_TIMES_0_5 );
    2545             : 
    2546        4253 :             energyModifier = L_sub( adjustedRevTime, revTimes[bin] ); /* Q26 */
    2547        4253 :             IF( GT_32( energyModifier, 0 ) )                          /* Very close to threshold, numeric accuracy is not sufficient and energyModifier would be negative. Correct way is to not adjust here. */
    2548             :             {
    2549        4253 :                 energyModifier = BASOP_Util_Divide3232_Scale_newton( energyModifier, adjustedRevTime, &scale ); /* Inputs in Q26 */
    2550        4253 :                 energyModifier = L_shl_sat( energyModifier, sub( scale, 1 ) );                                  /* Store in Q30 as range is [0,1]  */
    2551             : 
    2552             :                 /* Adjust early and late energies, by moving late energy to early energy */
    2553        4253 :                 IF( earlyEne != NULL )
    2554             :                 {
    2555        3527 :                     adjustedEarlyEne = L_shr( Mpy_32_32( revEne[bin], energyModifier ), 2 ); /* Q31 * Q30 mult, shift from Q30 to Q28 */
    2556        3527 :                     adjustedEarlyEne = L_add( adjustedEarlyEne, earlyEne[bin] );             /* Q28 */
    2557        3527 :                     earlyEne[bin] = adjustedEarlyEne;                                        /* Store already here */
    2558        3527 :                     move32();
    2559             :                 }
    2560             : 
    2561        4253 :                 adjustedLateEne = L_sub( ONE_IN_Q30, energyModifier );                       /* Q30 */
    2562        4253 :                 adjustedLateEne = L_shl_sat( Mpy_32_32( adjustedLateEne, revEne[bin] ), 1 ); /* Q30 * Q31 mult, shift back to Q31 */
    2563             : 
    2564             :                 /* Store adjusted room effect parameters to be used in reverb processing */
    2565        4253 :                 revTimes[bin] = adjustedRevTime;
    2566        4253 :                 move32();
    2567        4253 :                 revEne[bin] = adjustedLateEne;
    2568        4253 :                 move32();
    2569             :             }
    2570             :         }
    2571             :     }
    2572             : 
    2573         477 :     error = ivas_binaural_reverb_open_fx( hReverbPr, numBins, numCldfbSlotsPerFrame, sampling_rate, revTimes, revEne, preDelay );
    2574             : 
    2575         477 :     return error;
    2576             : }
    2577             : 
    2578             : 
    2579             : /*-------------------------------------------------------------------------
    2580             :  * ivas_binaural_reverb_close_fx()
    2581             :  *
    2582             :  * Close binaural room reverberator handle
    2583             :  *------------------------------------------------------------------------*/
    2584             : 
    2585         477 : void ivas_binaural_reverb_close_fx(
    2586             :     REVERB_STRUCT_HANDLE *hReverb /* i/o: binaural reverb handle */
    2587             : )
    2588             : {
    2589             :     Word16 bin, chIdx;
    2590             : 
    2591         477 :     test();
    2592         477 :     IF( hReverb == NULL || *hReverb == NULL )
    2593             :     {
    2594           0 :         return;
    2595             :     }
    2596             : 
    2597       20747 :     FOR( bin = 0; bin < ( *hReverb )->numBins; bin++ )
    2598             :     {
    2599       60810 :         FOR( chIdx = 0; chIdx < BINAURAL_CHANNELS; chIdx++ )
    2600             :         {
    2601       40540 :             free( ( *hReverb )->tapPhaseShiftType[bin][chIdx] );
    2602       40540 :             free( ( *hReverb )->tapPointersReal_fx[bin][chIdx] );
    2603       40540 :             free( ( *hReverb )->tapPointersImag_fx[bin][chIdx] );
    2604       40540 :             free( ( *hReverb )->outputBufferReal_fx[bin][chIdx] );
    2605       40540 :             free( ( *hReverb )->outputBufferImag_fx[bin][chIdx] );
    2606             :         }
    2607       20270 :         free( ( *hReverb )->loopBufReal_fx[bin] );
    2608       20270 :         free( ( *hReverb )->loopBufImag_fx[bin] );
    2609             :     }
    2610             : 
    2611         477 :     free( ( *hReverb ) );
    2612         477 :     ( *hReverb ) = NULL;
    2613             : 
    2614         477 :     return;
    2615             : }

Generated by: LCOV version 1.14