Line data Source code
1 : /*====================================================================================
2 : EVS Codec 3GPP TS26.452 Aug 12, 2021. Version 16.3.0
3 : ====================================================================================*/
4 :
5 : #include <stdint.h>
6 : #include "options.h" /* Compilation switches */
7 : #include "rom_dec.h" /* Static table prototypes */
8 : #include "rom_com.h" /* Static table prototypes */
9 : #include "prot_fx.h"
10 : #include "basop_util.h"
11 : #include "ivas_prot_fx.h"
12 :
13 : /*---------------------------------------------------------------------*
14 : * Local constants
15 : *---------------------------------------------------------------------*/
16 :
17 : #define FEC_MAX 512
18 : #define FEC_NB_PULSE_MAX 20
19 : #define FEC_FFT_MAX_SIZE 512
20 : #define FEC_DCIM_FILT_SIZE_MAX 60
21 :
22 : #define ENV_STAB_DEC_THR 16384 /* Q15 st->env_stab based threshold for hq-ecu technology decision */
23 :
24 : #define PHASE_DITH_fx 25736 /* 2*pi in Q12 */
25 : #define DELTA_CORR 6 /* Tuning parameter - defining range for phase correction around peak */
26 : #define THRESH_TR_DB_FX 10
27 : #define THRESH_TR_LIN_BY2_FX ( 10 / 2 ) /* 10.0^(THRESH_TR_DB_FX/10.0)/2. Divided by 2 to facilitate fixed-point implementation. */
28 : #define MAX_INCREASE_GRPPOW_FX 0 /* max. amplification in case of transients (in dB scale) */
29 : #define MAX_INCREASE_GRPPOW_LIN_FX 32767 /* in Q15-- 10.0^(MAX_INCREASE_GRPPOW_FX/10.0) (in linear scale) */
30 :
31 : #define PHASE_DITH_SCALE_SHIFT 16 /* The number of bit shift equivalent to multiply by PHASE_DITH_SCALE */
32 :
33 : #define BURST_PHDITH_THRESH ( 4 - 1 ) /* speech start phase dither with <burst_phdith_thresh> losses in a row */
34 : #define BURST_PHDITH_RAMPUP_LEN 2 /* speech ramp up degree of phase dither over a length of <burst_phdith_rampup_len> frames */
35 : #define BURST_ATT_THRESH ( 3 - 1 ) /* speech start attenuate with <burst_att_thresh> losses in a row */
36 : #define ATT_PER_FRAME 4 /* speech attenuation in dB */
37 : #define BETA_MUTE_THR 10 /* time threshold to start beta-noise attenuation */
38 :
39 : #define LGW32K 7
40 : #define LGW16K 6
41 : #define LGW48K LGW32K + 1 /* Use the same frequency groups as for SWB + 1 */
42 :
43 : #define LTRANALOG32K 8
44 : #define LTRANALOG16K 7
45 : #define PFIND_SENS_FX 31785 /* 0.97 in Q15 */
46 : #define CMPLMNT_PFIND_SENS_FX 983 /* (1.0 - pfind_sen) in Q15 */
47 :
48 : #define DELTA_CORR_F0_INT 2 /* Constant controls the bin range where Jacobsen is used */
49 : #define L_PROT_NS 32000000L /* Prototype frame length in nanoseconds (32 ms) */
50 : #define PH_ECU_CORR_LIMIT_Q15 27853 /* 0.85 in Q15 */
51 : #define PH_ECU_N_LIMIT 56 /* fec_alg analysis frame limit for IVAS Phase ECU activation */
52 : #define CMPLMNT_ST_PFIND_SENS_FX 2293 /* (1.0 - st_pfind_sen) in Q15 */
53 :
54 : #define FEC_HQ_ECU_POINT5 ( 0x4000 ) /* 0.5 in Q15. Prefix with FEC_HQ namespace to avoid naming conflict. */
55 : #define FEC_HQ_ECU_ROOT2 ( 0x5a83 ) /* sqrt(2) in Q14 */
56 : #define FEC_HQ_HAMM_A0 17695 /* 0.54 in Q15 */
57 : #define FEC_HQ_HAMM_A1 15073 /* 0.46 in Q15 */
58 : #define FEC_HQ_WIN_A0 FEC_HQ_HAMM_A0
59 : #define FEC_HQ_WIN_A1 FEC_HQ_HAMM_A1
60 :
61 : static Word16 sqrt2ndOrder( const Word16 );
62 :
63 : static void windowing( const Word16 *, Word16 *, const Word16 *, const Word16, const Word16 );
64 : static void windowing_ROM_optimized( const Word16 *, Word16 *, const Word16, const Word16, const Word16 );
65 : static void fft_spec2_fx( const Word16[], Word32[], const Word16 );
66 : static void trans_ana_fx( const Word16 *, Word16 *, Word16 *, Word16 *, const Word16, const Word16, const Word16, const Word16, const Word16, Word16 *, Word16 *, Word16 *, Word16 * );
67 : static void peakfinder_fx( const Word16 *, const Word16, Word16 *, Word16 *, const Word16 );
68 : static Word16 imax_fx( const Word16 *, const Word16 );
69 : static void spec_ana_fx( const Word16 *prevsynth, Word16 *plocs, Word32 *plocsi, Word16 *num_plocs, Word16 *X_sav, const Word16 output_frame, const Word16 bwidth_fx, Word16 *Q );
70 : static void subst_spec_fx( const Word16 *, const Word32 *, Word16 *, const Word16, Word16 *, const Word16 *, const Word16, const Word16 *, const Word16, Word16 *, const Word16 *, const Word16 *, Word16, const Word16 * );
71 : static Word16 rand_phase_fx( const Word16 seed, Word16 *sin_F, Word16 *cos_F );
72 :
73 : /*------------------------------------------------------------------*
74 : * rand_phase()
75 : *
76 : * randomized phase in form of sin and cos components
77 : *------------------------------------------------------------------*/
78 160162 : static Word16 rand_phase_fx( const Word16 seed, Word16 *sin_F /*Q15*/, Word16 *cos_F /*Q15*/ )
79 : {
80 160162 : const Word16 *sincos = sincos_t_ext_fx + 128; // Q15
81 160162 : Word16 seed2 = own_random2_fx( seed );
82 160162 : Word16 seed2_shift = shr( seed2, 8 );
83 :
84 160162 : *sin_F = negate( *( sincos + seed2_shift ) ); // Q15
85 160162 : move16();
86 160162 : if ( s_and( seed2, 0x40 ) != 0 )
87 : {
88 80140 : *sin_F = *( sincos + seed2_shift );
89 80140 : move16();
90 : }
91 :
92 160162 : *cos_F = negate( *( sincos - seed2_shift ) ); // Q15
93 160162 : move16();
94 160162 : if ( s_and( seed2, 0x80 ) != 0 )
95 : {
96 80171 : *cos_F = *( sincos - seed2_shift );
97 80171 : move16();
98 : }
99 :
100 160162 : return seed2;
101 : }
102 :
103 : /*! r: The location, relative to the middle of the 3 given data point, of the maximum. (Q15)*/
104 2200 : static Word16 ivas_imax2_jacobsen_mag_fx(
105 : const Word16 *y_re, /* i : The 3 given data points. real part order -1 0 1 Qx */
106 : const Word16 *y_im /* i : The 3 given data points. imag part order 1 0 -1 (from FFT) Qx */
107 : )
108 : {
109 : Word16 posi; // Q15
110 : const Word16 *pY;
111 : Word16 y_m1_re, y_0_re, y_p1_re;
112 : Word16 y_m1_im, y_0_im, y_p1_im;
113 : Word32 N_re, N_im;
114 : Word32 D_re, D_im;
115 : Word16 tmp, tmp_e;
116 : Word32 numer, denom;
117 : Word64 tmp_64_n, tmp_64_d;
118 :
119 : /* Jacobsen estimates peak offset relative y_0 using
120 : * X_m1 - X_p1
121 : * d = REAL ( ------------------- ) * c_jacob
122 : * 2*X_0 - X_m1 -Xp1
123 : *
124 : * Where c_jacob is a window dependent constant
125 : */
126 : #define C_JACOB_FX 18765 /* % assume 0.1875 hammrect window 'symmetric' */ /*Q14*/
127 :
128 : /* Get the bin parameters into variables */
129 2200 : pY = y_re;
130 2200 : y_m1_re = *pY++;
131 2200 : move16();
132 2200 : y_0_re = *pY++;
133 2200 : move16();
134 2200 : y_p1_re = *pY++;
135 2200 : move16();
136 :
137 : /* Same for imaginary parts - note reverse order from FFT */
138 2200 : pY = y_im;
139 2200 : y_p1_im = *pY++;
140 2200 : move16();
141 2200 : y_0_im = *pY++;
142 2200 : move16();
143 2200 : y_m1_im = *pY++;
144 2200 : move16();
145 :
146 : /* prepare numerator real and imaginary parts*/
147 2200 : N_re = L_sub( y_m1_re, y_p1_re );
148 2200 : N_im = L_sub( y_m1_im, y_p1_im );
149 :
150 : /* prepare denominator real and imaginary parts */
151 :
152 2200 : D_re = L_sub( L_sub( L_shl( y_0_re, 1 ), y_m1_re ), y_p1_re );
153 2200 : D_im = L_sub( L_sub( L_shl( y_0_im, 1 ), y_m1_im ), y_p1_im );
154 :
155 : /* REAL part of complex division */
156 2200 : tmp_64_n = W_mac_32_32( W_mult_32_32( N_re, D_re ), N_im, D_im );
157 2200 : tmp_64_d = W_mac_32_32( W_mult_32_32( D_re, D_re ), D_im, D_im );
158 2200 : tmp_e = s_min( W_norm( tmp_64_n ), W_norm( tmp_64_d ) );
159 2200 : numer = W_extract_h( W_shl( tmp_64_n, tmp_e ) );
160 2200 : denom = W_extract_h( W_shl( tmp_64_d, tmp_e ) );
161 :
162 2200 : test();
163 2200 : IF( numer != 0 && denom != 0 )
164 : {
165 2200 : tmp = BASOP_Util_Divide3232_Scale( numer, denom, &tmp_e );
166 2200 : tmp = shl_sat( tmp, tmp_e ); // Q15
167 2200 : posi = shl_sat( mult_r( tmp, C_JACOB_FX ), Q1 ); // Q15
168 : }
169 : ELSE
170 : {
171 0 : posi = 0; /* flat top, division is not possible choose center freq */
172 0 : move16();
173 : }
174 :
175 2200 : return posi;
176 : }
177 :
178 : /*-----------------------------------------------------------------------------
179 : * fft_spec2_fx()
180 : *
181 : * Square magnitude of fft spectrum
182 : *----------------------------------------------------------------------------*/
183 381 : static void fft_spec2_fx(
184 : const Word16 x[], /* i : Input vector: complex spectrum Q0*/
185 : Word32 xMagSq[], /* o : Magnitude square spectrum Q0*/
186 : const Word16 N /* i : Input vector length */
187 : )
188 : {
189 : Word16 i, l;
190 : const Word16 *pRe, *pIm;
191 : Word32 *pMagSq, acc;
192 :
193 : /* Magnitude at 0. */
194 381 : pMagSq = &xMagSq[0];
195 381 : pRe = &x[0];
196 381 : *pMagSq++ = L_mult0( *pRe, *pRe );
197 381 : move32();
198 381 : pRe++; /* Non-fractional multiply gives subsequent group power accumulation a bit headroom. */
199 :
200 : /* From 1 to (N/2 - 1). */
201 381 : l = sub( shr( N, 1 ), 1 ); /* N/2 - 1. */
202 381 : pIm = &x[N];
203 381 : pIm--;
204 119808 : FOR( i = 0; i < l; i++ )
205 : {
206 119427 : acc = L_mult0( *pRe, *pRe );
207 119427 : pRe++; /* Non-fractional mode multiply. */
208 119427 : *pMagSq++ = L_mac0( acc, *pIm, *pIm );
209 119427 : pIm--;
210 119427 : move32();
211 : }
212 :
213 : /* The magnitude square at N/2 */
214 381 : *pMagSq = L_mult0( *pRe, *pRe );
215 381 : move32();
216 381 : return;
217 : }
218 :
219 : /*-----------------------------------------------------------------------------
220 : * trans_ana_fx()
221 : *
222 : * Transient analysis
223 : *----------------------------------------------------------------------------*/
224 220 : static void trans_ana_fx(
225 : const Word16 *xfp, /* i : Input signal Q0 */
226 : Word16 *mag_chg, /* o : Magnitude modification Q15 */
227 : Word16 *ph_dith, /* o : Phase dither, 2*PI is not included (Q15, i.e., between 0.0 and 1.0) */
228 : Word16 *mag_chg_1st, /* i/o: per band magnitude modifier for transients Q15 */
229 : const Word16 output_frame, /* i : Frame length */
230 : const Word16 time_offs, /* i : Time offset (integral multiple of output_frame) */
231 : const Word16 est_mus_content, /* i : 0.0=speech_like ... 1.0=Music (==st->env_stab ) */
232 : const Word16 last_fec, /* i : signal that previous frame was concealed with fec_alg */
233 : const Word16 element_mode, /* i : element_mode req to handle EVS_MONO specific BE path */
234 : Word16 *alpha, /* o : Magnitude modification factors for fade to average */
235 : Word16 *beta, /* o : Magnitude modification factors for fade to average */
236 : Word16 *beta_mute, /* o : Factor for long-term mute Q15 */
237 : Word16 *Xavg /* o : Frequency group average gain to fade to */
238 : )
239 : {
240 : const Word16 *w_hamm, *pFftTbl;
241 : Word16 att_val, attDegreeFrames;
242 : Word16 xfp_left[L_TRANA48k], xfp_right[L_TRANA48k];
243 : Word32 magSqLeft[L_TRANA48k / 2 + 1], magSqRight[L_TRANA48k / 2 + 1];
244 : Word32 *pLeft, *pRight, *pGrPowLeft, *pGrPowRight;
245 : Word32 gr_pow_left[LGW_MAX], gr_pow_right[LGW_MAX];
246 : const Word16 *pXfp, *pGw;
247 : Word16 Ltrana, Ltrana_2, Lprot, three4thLength, LtranaLogMinus1, Lgw, i, k, l, burst_len;
248 : Word16 man, expo;
249 220 : Word16 att_always = 0; /* fixed attenuation per frequency group if set to 1 */
250 : Word16 oneOverFrame, roundEstMusContent, tmp16, headroom, lowerEdge;
251 220 : Word16 burst_phdith_thresh = BURST_PHDITH_THRESH; /*speech settings */
252 220 : Word16 burst_att_thresh = BURST_ATT_THRESH;
253 220 : Word16 att_per_frame = ATT_PER_FRAME;
254 220 : Word16 burst_phdith_rampup_len = BURST_PHDITH_RAMPUP_LEN;
255 : Word16 tr_dec[LGW_MAX];
256 : UWord16 lsb;
257 : Word32 acc;
258 :
259 220 : Lgw = 0;
260 220 : move16();
261 220 : LtranaLogMinus1 = 0;
262 220 : move16();
263 :
264 220 : move16(); // att_always
265 220 : move16(); // burst_phdith_thresh
266 220 : move16(); // burst_att_thresh
267 220 : move16(); // att_per_frame
268 220 : move16(); // burst_phdith_rampup_len
269 :
270 220 : pFftTbl = NULL;
271 :
272 : /* Initialisation to prevent warnings */
273 220 : oneOverFrame = 102; /* 1/320 in Q15 */
274 220 : move16();
275 220 : w_hamm = w_hamm16k_2_fx;
276 220 : move16();
277 220 : Lprot = 512;
278 220 : move16();
279 :
280 : /* check burst error */
281 220 : IF( EQ_16( output_frame, L_FRAME48k ) ) /* output_frame = (sampling frequency)/50 */
282 : {
283 155 : oneOverFrame = 34; /* 1/960 in Q15 */
284 155 : move16();
285 155 : w_hamm = w_hamm48k_2_fx;
286 155 : move16();
287 155 : Lgw = LGW48K;
288 155 : move16();
289 155 : Lprot = 1536; /* (2*output_frame)*1024/1280; */
290 155 : move16();
291 : }
292 65 : ELSE IF( EQ_16( output_frame, L_FRAME32k ) )
293 : {
294 54 : oneOverFrame = 51; /* 1/640 in Q15 */
295 54 : move16();
296 54 : w_hamm = w_hamm32k_2_fx;
297 54 : Lgw = LGW32K;
298 54 : move16();
299 54 : Lprot = 1024;
300 54 : move16();
301 54 : pFftTbl = FFT_W128; /* Table for 256 real input radix-2 FFT */
302 54 : LtranaLogMinus1 = LTRANALOG32K - 1;
303 54 : move16();
304 : }
305 : ELSE
306 : {
307 11 : oneOverFrame = 102; /* 1/320 in Q15 */
308 11 : move16();
309 11 : w_hamm = w_hamm16k_2_fx;
310 11 : Lgw = LGW16K;
311 11 : move16();
312 11 : Lprot = 512;
313 11 : move16();
314 11 : pFftTbl = FFT_W64; /* Table for 128 real input radix-2 FFT */
315 11 : LtranaLogMinus1 = LTRANALOG16K - 1;
316 11 : move16();
317 : }
318 220 : burst_len = add( mult_r( time_offs, oneOverFrame ), 1 );
319 :
320 220 : *ph_dith = 0;
321 220 : move16(); /* typical pattern is 2*pi*[0 0 .25 .50 .75 1.0 1.0 1.0 ..] */
322 :
323 220 : IF( GE_16( output_frame, L_FRAME32k ) ) /*currently est_mus_content only calculated for SWB and FB */
324 : {
325 209 : roundEstMusContent = 0;
326 209 : move16();
327 209 : if ( GE_16( est_mus_content, FEC_HQ_ECU_POINT5 ) ) /* est_mus_content is in [0.0, 1.0]. */
328 : {
329 197 : roundEstMusContent = 1;
330 197 : move16();
331 : }
332 :
333 : /* softly shift attenuation just a bit later for estimated "stable" music_content */
334 209 : burst_phdith_thresh = add( BURST_PHDITH_THRESH, roundEstMusContent );
335 209 : burst_att_thresh = add( BURST_ATT_THRESH, roundEstMusContent );
336 209 : att_per_frame = sub( ATT_PER_FRAME, roundEstMusContent ); /* only slighty less att for music */
337 : }
338 : ELSE
339 : {
340 : /* lock to music-like stable envelope setting for now */
341 11 : burst_phdith_thresh = add( BURST_PHDITH_THRESH, 1 ); /* in Q0 */
342 11 : burst_att_thresh = add( BURST_ATT_THRESH, 1 ); /* in Q0 */
343 11 : att_per_frame = sub( ATT_PER_FRAME, 1 ); /* in Q0 */
344 : }
345 :
346 220 : IF( GT_16( burst_len, burst_phdith_thresh ) )
347 : {
348 : /* increase degree of dither */
349 : #if BURST_PHDITH_RAMPUP_LEN != 2
350 : #error The implementation of phase_dith=min(1.0, (burst_len - burst_phdith_thresh)/burst_phdith_rampup_len)) is incorrect
351 : #endif
352 72 : *ph_dith = 32767; /* 1.0 in Q15. N.B. 2*PI is not included. */
353 72 : move16();
354 72 : tmp16 = sub( burst_len, burst_phdith_thresh );
355 72 : if ( LT_16( tmp16, burst_phdith_rampup_len ) )
356 : {
357 2 : *ph_dith = 16384; /* 0.5 in Q15. N.B. 2*PI is not included. */
358 2 : move16();
359 : }
360 : }
361 :
362 220 : attDegreeFrames = 0;
363 220 : move16();
364 220 : IF( GT_16( burst_len, burst_att_thresh ) )
365 : {
366 74 : att_always = 1;
367 74 : move16();
368 : /* increase degree of attenuation */
369 :
370 : /* N.B. To facilitate the subsequent 10^(-att_degree/20) implementation
371 : * so as to use direct table-lookup,
372 : * (burstLen - burst_att_thresh) is NOT multiplied by "att_per_frame". */
373 74 : attDegreeFrames = sub( burst_len, burst_att_thresh ); /* Not multiplied by att_per_frqme! */
374 : /* Furthermore, in order to minimize the size of the lookup-table required to
375 : * implement 10^(-att_degree/10), hard limit attDegreeFrames to (30% of 50)=15.
376 : * If attDegreeFrames is greater than 15, it means there are more than 15 successive
377 : * bad frames. In this case, no matter what to do, the sound quality will be bad.
378 : */
379 74 : if ( GT_16( attDegreeFrames, OFF_FRAMES_LIMIT ) )
380 : {
381 14 : attDegreeFrames = OFF_FRAMES_LIMIT; /* Hard limit the no. of frames */
382 14 : move16();
383 : }
384 : }
385 :
386 220 : Ltrana = shr( Lprot, 2 );
387 220 : Ltrana_2 = shr( Ltrana, 1 );
388 :
389 220 : test();
390 220 : test();
391 220 : IF( LE_16( burst_len, 1 ) || ( EQ_16( burst_len, 2 ) && last_fec != 0 ) )
392 : {
393 :
394 127 : set16_fx( alpha, 32767, LGW_MAX );
395 127 : set16_fx( beta, 0, LGW_MAX );
396 127 : *beta_mute = BETA_MUTE_FAC_INI;
397 127 : move16();
398 :
399 : /* Apply Hamming window */
400 127 : windowing( xfp, xfp_left, w_hamm, 0, Ltrana_2 ); /* 1st quarter */
401 127 : three4thLength = sub( Lprot, Ltrana );
402 127 : pXfp = xfp + three4thLength;
403 127 : windowing( pXfp, xfp_right, w_hamm, 0, Ltrana_2 ); /* 4th quarter */
404 :
405 : /* spectrum */
406 127 : IF( EQ_16( output_frame, L_FRAME48k ) )
407 : {
408 67 : fft3_fx( xfp_left, xfp_left, Ltrana );
409 67 : fft3_fx( xfp_right, xfp_right, Ltrana );
410 : }
411 : ELSE
412 : {
413 60 : r_fft_fx_lc( pFftTbl, Ltrana, Ltrana_2, LtranaLogMinus1, xfp_left, xfp_left, 1 );
414 60 : r_fft_fx_lc( pFftTbl, Ltrana, Ltrana_2, LtranaLogMinus1, xfp_right, xfp_right, 1 );
415 : }
416 :
417 : /* square representation */
418 127 : fft_spec2_fx( xfp_left, magSqLeft, Ltrana );
419 127 : fft_spec2_fx( xfp_right, magSqRight, Ltrana );
420 :
421 : /* band powers in frequency groups
422 : * exclude bin at PI from calculation */
423 127 : magSqLeft[Ltrana_2] = L_deposit_l( 0 );
424 127 : move32();
425 127 : magSqRight[Ltrana_2] = L_deposit_l( 0 );
426 127 : move32();
427 : }
428 :
429 220 : pGrPowLeft = &gr_pow_left[0];
430 220 : pGrPowRight = &gr_pow_right[0];
431 220 : pGw = gw;
432 1904 : FOR( k = 0; k < Lgw; k++ )
433 : {
434 1684 : test();
435 1684 : test();
436 1684 : IF( LE_16( burst_len, 1 ) || ( EQ_16( burst_len, 2 ) && last_fec != 0 ) )
437 : {
438 947 : lowerEdge = *pGw++;
439 947 : move16();
440 947 : l = sub( *pGw, lowerEdge );
441 947 : headroom = GR_POW_HEADROOM[k]; /* Number of bits to scale down preventing from saturation in accumulation.*/
442 947 : move16();
443 947 : pLeft = magSqLeft + lowerEdge;
444 947 : pRight = magSqRight + lowerEdge;
445 947 : *pGrPowLeft = L_deposit_l( 0 );
446 947 : move32();
447 947 : *pGrPowRight = L_deposit_l( 0 );
448 947 : move32();
449 20788 : FOR( i = 0; i < l; i++ )
450 : {
451 19841 : acc = L_shr( *pLeft++, headroom ); /* Scale down to prevent from saturation. */
452 19841 : *pGrPowLeft = L_add( *pGrPowLeft, acc );
453 19841 : move32();
454 19841 : acc = L_shr( *pRight++, headroom );
455 19841 : *pGrPowRight = L_add( *pGrPowRight, acc );
456 19841 : move32();
457 : }
458 :
459 : /*Xavg[k] = sqrt(0.5f*(gr_pow_left[k]+gr_pow_right[k])/(float)(gw[k+1]-gw[k]));*/
460 947 : acc = L_shr( L_add( *pGrPowLeft, *pGrPowRight ), 1 );
461 947 : acc = Mult_32_16( acc, gw_len_inv_fx[k] ); /* -headroom */
462 :
463 947 : acc = Sqrt_l( acc, &expo ); /* -headroom+31+expo */
464 :
465 947 : expo = sub( add( expo, 31 ), headroom );
466 947 : if ( EQ_16( s_and( expo, 1 ), 1 ) )
467 : {
468 693 : acc = Mult_32_16( acc, 23170 ); /* 1/sqrt(2) in Q15 */
469 : }
470 947 : expo = shr( expo, 1 );
471 947 : Xavg[k] = round_fx( L_shl( acc, sub( sub( 16, expo ), 2 ) ) ); /* Q0, additional right shift by 2 to account for that Xavg is
472 : calculated using lenght N/4 fft but is applied on a fft of length N */
473 947 : move16();
474 :
475 : /*dither phase in case of transient */
476 : /* separate transition detection and application of forced burst dithering */
477 947 : tr_dec[k] = 0;
478 947 : move16();
479 947 : Mpy_32_16_ss( *pGrPowLeft, THRESH_TR_LIN_BY2_FX, &acc, &lsb ); /* To facilitate fixed-point implementation, divide threshold by 2. */
480 947 : acc = L_or( L_shl_sat( acc, 16 ), L_and( 0xffffL, lsb ) ); /* Equivalent to concatenate acc and lsb, and then down shift by 16 bits. */
481 947 : if ( GT_32( *pGrPowRight, acc ) ) /* gr_pow_right > thres_tr_lin*gr_pow_left */
482 : {
483 64 : tr_dec[k] = 1;
484 64 : move16();
485 : }
486 947 : Mpy_32_16_ss( *pGrPowRight, THRESH_TR_LIN_BY2_FX, &acc, &lsb );
487 947 : acc = L_or( L_shl_sat( acc, 16 ), L_and( 0xffffL, lsb ) ); /* Equivalent to concatenate acc and lsb, and then down shift by 16 bits. */
488 947 : if ( GT_32( *pGrPowLeft, acc ) ) /* gr_pow_left > thres_tr_lin*gr_pow_right */
489 : {
490 16 : tr_dec[k] = 1;
491 16 : move16();
492 : }
493 :
494 : /* magnitude modification */
495 947 : IF( add( tr_dec[k], att_always ) != 0 )
496 : {
497 :
498 : #if MAX_INCREASE_GRPPOW_FX != 0
499 : #error trans_ana_fx-- The following implementation is incorrect
500 : #endif
501 80 : att_val = 32767;
502 80 : move16();
503 80 : IF( *pGrPowRight > 0 )
504 : {
505 73 : IF( LT_32( *pGrPowRight, *pGrPowLeft ) ) /* i.e., (gr_pow_right/gr_pow_left) < 1.0 */
506 : {
507 : /* Compute sqrt(grp_pow_chg), where grp_pow_chg = gr_pow_right/gr_pow_left. */
508 9 : tmp16 = ratio( *pGrPowRight, *pGrPowLeft, &expo ); /* tmp16 in Q14 */
509 9 : expo = sub( expo, ( 15 - 14 ) ); /* Now, tmp16 is considered in Q15 */
510 9 : i = norm_s( tmp16 );
511 9 : man = shl( tmp16, i ); /* Mandatory normalization before sqrtNthOrder(). */
512 9 : expo = add( expo, i );
513 9 : man = sqrt2ndOrder( man );
514 9 : if ( s_and( expo, 1 ) != 0 ) /* Check even or odd. */
515 : {
516 7 : man = mult_r( man, FEC_HQ_ECU_ROOT2 );
517 : }
518 9 : expo = shr( expo, 1 ); /* Divided by 2-- square root operation. */
519 9 : att_val = shr( man, expo ); /* Denormalize the mantissa back to Q15. */
520 : }
521 : /* ELSE do nothing because (gr_pow_right/gr_pow_left) >= 1.0 (i.e.,
522 : * max_increase_grppow_lin) */
523 : }
524 :
525 80 : mag_chg_1st[k] = att_val;
526 80 : move16();
527 80 : mag_chg[k] = att_val;
528 80 : move16();
529 : }
530 : ELSE
531 : {
532 867 : mag_chg_1st[k] = 32767;
533 867 : move16();
534 867 : mag_chg[k] = 32767;
535 867 : move16(); /* Set to 1.0 in Q15 */
536 : }
537 : }
538 : ELSE
539 : {
540 : /* Since attDegreeFrames is discrete (integer) and hard limited to OFF_FRAMES_LIMIT,
541 : * it is much easier to implement 10^(-att_degree/20.0) by a simply direct
542 : * table-lookup. Also, att_per_frame is discrete as well and can be
543 : * either ATT_PER_FRAME-1 or ATT_PER_FRAME and nothing else. This
544 : * means only 2 tables of size=(OFF_FRAMES_LIMIT+1) each are required.
545 : * To take square root into account, it is divided by 20 instead of 10. */
546 737 : IF( EQ_16( att_per_frame, ATT_PER_FRAME ) ) /* Select the corresponding lookup-table. */
547 : {
548 8 : att_val = POW_ATT_TABLE0[attDegreeFrames]; /* 10^(-attDegreeFrames*(ATT_PER_FRAME)/20) */
549 8 : move16();
550 : }
551 : ELSE
552 : {
553 729 : att_val = POW_ATT_TABLE1[attDegreeFrames]; /* 10^(-attDegreeFrames*(ATT_PER_FRAME - 1)/20) */
554 729 : move16();
555 : }
556 737 : mag_chg[k] = mult_r( mag_chg_1st[k], att_val ); /* Q15 */
557 737 : move16();
558 :
559 737 : IF( NE_16( element_mode, EVS_MONO ) )
560 : {
561 737 : IF( EQ_16( k, 0 ) && GT_16( burst_len, BETA_MUTE_THR ) ) /* beta_mute final long term attenuation adjusted only once per frame in the first sub-band, Ref Eq(184) in 26.447 */
562 : {
563 60 : *beta_mute = shr( *beta_mute, 1 );
564 60 : move16();
565 : }
566 : }
567 : ELSE
568 : {
569 0 : IF( GT_16( burst_len, BETA_MUTE_THR ) ) /* legacy incorrect(too fast) EVS_MONO operation, still kept for BE. To be updated after EVS CR, ref Eq (184) in 26.447 */
570 : {
571 0 : *beta_mute = shr( *beta_mute, 1 );
572 0 : move16();
573 : }
574 : }
575 :
576 737 : alpha[k] = mag_chg[k];
577 737 : move16();
578 : /*beta[k] = sqrt(1.0f - SQR(alpha[k])) * *beta_mute;*/
579 737 : acc = L_sub( 1073741824, L_mult0( alpha[k], alpha[k] ) );
580 737 : acc = Sqrt_l( acc, &expo );
581 737 : expo = add( 30, add( 31, expo ) );
582 737 : if ( EQ_16( s_and( expo, 1 ), 1 ) )
583 : {
584 737 : acc = Mult_32_16( acc, 23170 ); /* 1/sqrt(2) in Q15 */
585 : }
586 737 : expo = shr( expo, 1 );
587 737 : beta[k] = mult_r( *beta_mute, round_fx( L_shl( acc, sub( 31, expo ) ) ) );
588 737 : move16();
589 :
590 737 : IF( GE_16( k, LGW32K - 1 ) )
591 : {
592 179 : beta[k] = mult_r( beta[k], 3277 ); /* 0.1 in Q15 */
593 179 : move16();
594 : }
595 558 : ELSE IF( GE_16( k, LGW16K - 1 ) )
596 : {
597 93 : beta[k] = mult_r( beta[k], 16384 ); /* 0.5 in Q15 */
598 93 : move16();
599 : }
600 : }
601 1684 : pGrPowLeft++;
602 1684 : pGrPowRight++;
603 : }
604 :
605 220 : return;
606 : }
607 :
608 : /*-----------------------------------------------------------------------------
609 : * peakfinder_fx()
610 : *
611 : * Peak-picking algorithm
612 : *----------------------------------------------------------------------------*/
613 127 : static void ivas_peakfinder_fx(
614 : const Word16 *x0, /* i : vector from which the maxima will be found */
615 : const Word16 len0, /* i : length of input vector */
616 : Word16 *plocs, /* o : the indices of the identified peaks in x0 Q0 */
617 : Word16 *cInd, /* o : number of identified peaks Q0 */
618 : const Word16 sel, /* i : The amount above surrounding data for a peak to be identified */
619 : const Word16 endpoints /* i : Flag to include endpoints in peak search */
620 : )
621 : {
622 : const Word16 *pX0;
623 : Word16 minMag, tempMag, leftMin;
624 : Word16 dx0[L_PROT48k_2], x[L_PROT48k_2 + 1], peakMag[MAX_PLOCS];
625 : Word16 *pDx0, *pDx01, *pX;
626 : Word16 i, len, tempLoc, foundPeak, ii, xInd, tmp16, threshold, xAt0, xAt1, xAt2;
627 : Word16 len0Minus1, len0Minus2, lenMinus1;
628 : Word16 indarr[L_PROT48k_2 + 1], peakLoc[MAX_PLOCS];
629 : Word16 *pInd;
630 :
631 127 : tempLoc = 0;
632 127 : move16();
633 :
634 : /* Find derivative */
635 127 : len0Minus1 = sub( len0, 1 );
636 127 : pX0 = x0 + 1;
637 127 : Vr_subt( pX0, x0, dx0, len0Minus1 );
638 :
639 79999 : FOR( i = 0; i < len0Minus1; i++ )
640 : {
641 79872 : if ( dx0[i] == 0 )
642 : {
643 17562 : dx0[i] = -1;
644 17562 : move16();
645 : }
646 : }
647 :
648 : /* Find where the derivative changes sign
649 : Include endpoints in potential peaks and valleys */
650 127 : pX = x;
651 127 : pX0 = x0;
652 127 : pInd = indarr;
653 127 : pDx01 = dx0;
654 127 : pDx0 = pDx01 + 1;
655 127 : len = 0;
656 127 : move16();
657 127 : IF( endpoints )
658 : {
659 127 : *pX++ = *pX0++;
660 127 : move16();
661 127 : *pInd++ = 0;
662 127 : move16();
663 127 : len = 2;
664 127 : move16();
665 : }
666 127 : len0Minus2 = sub( len0, 2 );
667 :
668 79872 : FOR( i = 0; i < len0Minus2; i++ )
669 : {
670 79745 : IF( s_xor( *pDx01++, *pDx0++ ) < 0 ) /* Detect sign change. */
671 : {
672 38832 : *pInd++ = add( i, 1 );
673 38832 : move16();
674 38832 : *pX++ = *pX0;
675 38832 : move16();
676 38832 : len = add( len, 1 );
677 : }
678 79745 : pX0++;
679 : }
680 127 : IF( endpoints )
681 : {
682 127 : *pInd = len0Minus1;
683 127 : move16();
684 127 : *pX = *pX0;
685 127 : move16();
686 : }
687 : /* x[] only has the peaks, valleys, and endpoints */
688 127 : minimum_fx( x, len, &minMag );
689 :
690 127 : pInd = indarr;
691 127 : test();
692 127 : test();
693 127 : IF( GT_16( len, 2 ) || ( !endpoints && ( len > 0 ) ) )
694 : {
695 : /* Set initial parameters for loop */
696 127 : tempMag = minMag;
697 127 : move16();
698 127 : foundPeak = 0;
699 127 : move16();
700 127 : leftMin = minMag;
701 127 : move16();
702 127 : threshold = add( leftMin, sel );
703 :
704 127 : IF( len > 0 )
705 : {
706 : /* Deal with first point a little differently since tacked it on
707 : Calculate the sign of the derivative since we took the first point
708 : on it does not necessarily alternate like the rest. */
709 :
710 : /* The first point is larger or equal to the second */
711 127 : pX = x;
712 127 : xAt0 = *pX++;
713 127 : move16();
714 127 : xAt1 = *pX++;
715 127 : move16();
716 127 : xAt2 = *pX--; /* After decrement, pX points to x[1]. */
717 127 : move16();
718 127 : IF( GE_16( xAt0, xAt1 ) )
719 : {
720 46 : ii = -1;
721 46 : move16();
722 46 : IF( GE_16( xAt1, xAt2 ) ) /* x[1] is not extremum -> overwrite with x[0] */
723 : {
724 0 : *pX = xAt0; /* x[1] = x[0] */
725 0 : move16();
726 0 : tmp16 = *pInd++;
727 0 : move16();
728 0 : *pInd++ = tmp16; /* ind[1] = ind[0] */
729 0 : move16();
730 0 : len = sub( len, 1 );
731 : }
732 46 : pX--; /* After decrement, pX points to x[0]. */
733 : }
734 : ELSE /* First point is smaller than the second */
735 : {
736 81 : ii = 0;
737 81 : move16();
738 81 : IF( LT_16( xAt1, xAt2 ) ) /* x[1] is not extremum -> overwrite with x[0] */
739 : {
740 0 : *pX = xAt0; /* x[1] = x[0] */
741 0 : move16();
742 0 : tmp16 = *pInd++;
743 0 : move16();
744 0 : *pInd++ = tmp16; /* ind[1] = ind[0] */
745 0 : move16();
746 0 : len = sub( len, 1 );
747 : }
748 : }
749 127 : pX--; /* After decrement, pX points to either x[-1] or x[0]. */
750 : }
751 : ELSE
752 : {
753 0 : ii = -1; /* First point is a peak */
754 0 : move16();
755 0 : IF( GE_16( len, 2 ) )
756 : {
757 0 : if ( GE_16( x[1], x[0] ) )
758 : {
759 0 : ii = 0; /* First point is a valley, skip it */
760 0 : move16();
761 : }
762 : }
763 : }
764 127 : *cInd = 0;
765 127 : move16();
766 : /*Loop through extrema which should be peaks and then valleys*/
767 127 : lenMinus1 = sub( len, 1 );
768 : FOR( ;; )
769 : {
770 19611 : ii = add( ii, 1 ); /* This is a peak */
771 :
772 : /* Make sure we don't iterate past the length of our vector */
773 19611 : IF( GE_16( ii, lenMinus1 ) )
774 : {
775 127 : BREAK;
776 : }
777 :
778 : /*Reset peak finding if we had a peak and the next peak is bigger
779 : than the last or the left min was small enough to reset.*/
780 19484 : IF( foundPeak > 0 )
781 : {
782 2481 : tempMag = minMag;
783 2481 : move16();
784 2481 : foundPeak = 0;
785 2481 : move16();
786 : }
787 :
788 : /* Found new peak that was larger than temp mag and selectivity larger
789 : than the minimum to its left. */
790 19484 : IF( GT_16( *( ++pX ), tempMag ) )
791 : {
792 19053 : IF( GT_16( *pX, threshold ) ) /* threshold = leftMin + sel */
793 : {
794 2876 : tempLoc = ii;
795 2876 : move16();
796 2876 : tempMag = *pX;
797 2876 : move16();
798 : }
799 : }
800 :
801 19484 : ii = add( ii, 1 ); /* Move onto the valley */
802 19484 : pX++;
803 :
804 : /* Come down at least sel from peak */
805 19484 : IF( foundPeak == 0 )
806 : {
807 19484 : IF( GT_16( tempMag, add( sel, *pX ) ) )
808 : {
809 2488 : foundPeak = 1; /* We have found a peak */
810 2488 : move16();
811 2488 : leftMin = *pX;
812 2488 : move16();
813 2488 : threshold = add( leftMin, sel );
814 2488 : peakLoc[*cInd] = tempLoc; /* Add peak to index */
815 2488 : move16();
816 2488 : peakMag[*cInd] = tempMag;
817 2488 : move16();
818 2488 : *cInd = add( *cInd, 1 );
819 2488 : move16();
820 : }
821 : }
822 19484 : IF( foundPeak == 0 ) /* The above IF-block has not found the peak yet. */
823 : {
824 16996 : IF( LT_16( *pX, leftMin ) ) /* New left minimum */
825 : {
826 1968 : leftMin = *pX;
827 1968 : move16();
828 1968 : threshold = add( leftMin, sel );
829 : }
830 : }
831 : }
832 :
833 : /* Check end point */
834 127 : IF( GT_16( x[lenMinus1], tempMag ) )
835 : {
836 82 : IF( GT_16( x[lenMinus1], threshold ) ) /* threshold = leftMin + sel */
837 : {
838 0 : peakLoc[*cInd] = lenMinus1;
839 0 : move16();
840 0 : peakMag[*cInd] = x[lenMinus1];
841 0 : move16();
842 0 : *cInd = add( *cInd, 1 );
843 0 : move16();
844 0 : foundPeak = 1;
845 0 : move16();
846 : }
847 : }
848 127 : IF( foundPeak == 0 ) /* Check if we still need to add the last point */
849 : {
850 120 : IF( GT_16( tempMag, minMag ) )
851 : {
852 2 : peakLoc[*cInd] = tempLoc;
853 2 : move16();
854 2 : peakMag[*cInd] = tempMag;
855 2 : move16();
856 2 : *cInd = add( *cInd, 1 );
857 2 : move16();
858 : }
859 : }
860 :
861 : /* Create output */
862 2617 : FOR( i = 0; i < *cInd; i++ )
863 : {
864 2490 : plocs[i] = *( indarr + peakLoc[i] );
865 2490 : move16();
866 : }
867 : }
868 : ELSE /* This is a monotone function where an endpoint is the only peak */
869 : {
870 0 : IF( endpoints )
871 : {
872 0 : xInd = 1;
873 0 : move16();
874 0 : if ( GT_16( x[0], x[1] ) )
875 : {
876 0 : xInd = 0;
877 0 : move16();
878 : }
879 :
880 0 : peakMag[0] = x[xInd];
881 0 : move16();
882 0 : IF( GT_16( peakMag[0], add( minMag, sel ) ) )
883 : {
884 0 : plocs[0] = *( indarr + xInd );
885 0 : move16();
886 0 : *cInd = 1;
887 0 : move16();
888 : }
889 : ELSE
890 : {
891 0 : *cInd = 0;
892 0 : move16();
893 : }
894 : }
895 : ELSE
896 : { /* Input constant or all zeros -- no peaks found */
897 0 : *cInd = 0;
898 0 : move16();
899 : }
900 : }
901 127 : }
902 :
903 0 : static void peakfinder_fx(
904 : const Word16 *x0, /* i : vector from which the maxima will be found */
905 : const Word16 len0, /* i : length of input vector */
906 : Word16 *plocs, /* o : the indices of the identified peaks in x0 Q0 */
907 : Word16 *cInd, /* o : number of identified peaks Q0 */
908 : const Word16 sel /* i : The amount above surrounding data for a peak to be identified */
909 : )
910 : {
911 : const Word16 *pX0;
912 : Word16 minMag, tempMag, leftMin;
913 : Word16 dx0[L_PROT48k_2], x[L_PROT48k_2 + 1], peakMag[MAX_PLOCS];
914 : Word16 *pDx0, *pDx01, *pX;
915 : Word16 i, len, tempLoc, foundPeak, ii, xInd, tmp16, threshold, xAt0, xAt1, xAt2;
916 : Word16 len0Minus1, len0Minus2, lenMinus1;
917 : Word16 indarr[L_PROT48k_2 + 1], peakLoc[MAX_PLOCS];
918 : Word16 *pInd;
919 :
920 0 : tempLoc = 0;
921 0 : move16();
922 :
923 : /* Find derivative */
924 0 : len0Minus1 = sub( len0, 1 );
925 0 : pX0 = x0 + 1;
926 0 : Vr_subt( pX0, x0, dx0, len0Minus1 );
927 :
928 0 : FOR( i = 0; i < len0Minus1; i++ )
929 : {
930 0 : if ( dx0[i] == 0 )
931 : {
932 0 : dx0[i] = -1;
933 0 : move16();
934 : }
935 : }
936 :
937 : /* Find where the derivative changes sign
938 : Include endpoints in potential peaks and valleys */
939 0 : pX = x;
940 0 : pX0 = x0;
941 0 : pInd = indarr;
942 0 : pDx01 = dx0;
943 0 : pDx0 = pDx01 + 1;
944 : {
945 0 : *pX++ = *pX0++;
946 0 : move16();
947 0 : *pInd++ = 0;
948 0 : move16();
949 0 : len = 2;
950 0 : move16();
951 : }
952 0 : len0Minus2 = sub( len0, 2 );
953 :
954 0 : FOR( i = 0; i < len0Minus2; i++ )
955 : {
956 0 : IF( s_xor( *pDx01++, *pDx0++ ) < 0 ) /* Detect sign change. */
957 : {
958 0 : *pInd++ = add( i, 1 );
959 0 : move16();
960 0 : *pX++ = *pX0;
961 0 : move16();
962 0 : len = add( len, 1 );
963 : }
964 0 : pX0++;
965 : }
966 : {
967 0 : *pInd = len0Minus1;
968 0 : move16();
969 0 : *pX = *pX0;
970 0 : move16();
971 : }
972 : /* x[] only has the peaks, valleys, and endpoints */
973 0 : minimum_fx( x, len, &minMag );
974 :
975 0 : pInd = indarr;
976 0 : IF( GT_16( len, 2 ) )
977 : {
978 : /* Set initial parameters for loop */
979 0 : tempMag = minMag;
980 0 : move16();
981 0 : foundPeak = 0;
982 0 : move16();
983 0 : leftMin = minMag;
984 0 : move16();
985 0 : threshold = add( leftMin, sel );
986 :
987 : {
988 : /* Deal with first point a little differently since tacked it on
989 : Calculate the sign of the derivative since we took the first point
990 : on it does not necessarily alternate like the rest. */
991 :
992 : /* The first point is larger or equal to the second */
993 0 : pX = x;
994 0 : xAt0 = *pX++;
995 0 : move16();
996 0 : xAt1 = *pX++;
997 0 : move16();
998 0 : xAt2 = *pX--; /* After decrement, pX points to x[1]. */
999 0 : move16();
1000 0 : IF( GE_16( xAt0, xAt1 ) )
1001 : {
1002 0 : ii = -1;
1003 0 : move16();
1004 0 : IF( GE_16( xAt1, xAt2 ) ) /* x[1] is not extremum -> overwrite with x[0] */
1005 : {
1006 0 : *pX = xAt0; /* x[1] = x[0] */
1007 0 : move16();
1008 0 : tmp16 = *pInd++;
1009 0 : move16();
1010 0 : *pInd++ = tmp16; /* ind[1] = ind[0] */
1011 0 : move16();
1012 0 : len = sub( len, 1 );
1013 : }
1014 0 : pX--; /* After decrement, pX points to x[0]. */
1015 : }
1016 : ELSE /* First point is smaller than the second */
1017 : {
1018 0 : ii = 0;
1019 0 : move16();
1020 0 : IF( LT_16( xAt1, xAt2 ) ) /* x[1] is not extremum -> overwrite with x[0] */
1021 : {
1022 0 : *pX = xAt0; /* x[1] = x[0] */
1023 0 : move16();
1024 0 : tmp16 = *pInd++;
1025 0 : move16();
1026 0 : *pInd++ = tmp16; /* ind[1] = ind[0] */
1027 0 : move16();
1028 0 : len = sub( len, 1 );
1029 : }
1030 : }
1031 0 : pX--; /* After decrement, pX points to either x[-1] or x[0]. */
1032 : }
1033 0 : *cInd = 0;
1034 0 : move16();
1035 : /*Loop through extrema which should be peaks and then valleys*/
1036 0 : lenMinus1 = sub( len, 1 );
1037 : FOR( ;; )
1038 : {
1039 0 : ii = add( ii, 1 ); /* This is a peak */
1040 :
1041 : /* Make sure we don't iterate past the length of our vector */
1042 0 : IF( GE_16( ii, lenMinus1 ) )
1043 : {
1044 0 : BREAK;
1045 : }
1046 :
1047 : /*Reset peak finding if we had a peak and the next peak is bigger
1048 : than the last or the left min was small enough to reset.*/
1049 0 : IF( foundPeak > 0 )
1050 : {
1051 0 : tempMag = minMag;
1052 0 : move16();
1053 0 : foundPeak = 0;
1054 0 : move16();
1055 : }
1056 :
1057 : /* Found new peak that was larger than temp mag and selectivity larger
1058 : than the minimum to its left. */
1059 0 : IF( GT_16( *( ++pX ), tempMag ) )
1060 : {
1061 0 : IF( GT_16( *pX, threshold ) ) /* threshold = leftMin + sel */
1062 : {
1063 0 : tempLoc = ii;
1064 0 : move16();
1065 0 : tempMag = *pX;
1066 0 : move16();
1067 : }
1068 : }
1069 :
1070 0 : ii = add( ii, 1 ); /* Move onto the valley */
1071 0 : pX++;
1072 :
1073 : /* Come down at least sel from peak */
1074 0 : IF( foundPeak == 0 )
1075 : {
1076 0 : IF( GT_16( tempMag, add( sel, *pX ) ) )
1077 : {
1078 0 : foundPeak = 1; /* We have found a peak */
1079 0 : move16();
1080 0 : leftMin = *pX;
1081 0 : move16();
1082 0 : threshold = add( leftMin, sel );
1083 0 : peakLoc[*cInd] = tempLoc; /* Add peak to index */
1084 0 : move16();
1085 0 : peakMag[*cInd] = tempMag;
1086 0 : move16();
1087 0 : *cInd = add( *cInd, 1 );
1088 0 : move16();
1089 : }
1090 : }
1091 0 : IF( foundPeak == 0 ) /* The above IF-block has not found the peak yet. */
1092 : {
1093 0 : IF( LT_16( *pX, leftMin ) ) /* New left minimum */
1094 : {
1095 0 : leftMin = *pX;
1096 0 : move16();
1097 0 : threshold = add( leftMin, sel );
1098 : }
1099 : }
1100 : }
1101 :
1102 : /* Check end point */
1103 0 : IF( GT_16( x[lenMinus1], tempMag ) )
1104 : {
1105 0 : IF( GT_16( x[lenMinus1], threshold ) ) /* threshold = leftMin + sel */
1106 : {
1107 0 : peakLoc[*cInd] = lenMinus1;
1108 0 : move16();
1109 0 : peakMag[*cInd] = x[lenMinus1];
1110 0 : move16();
1111 0 : *cInd = add( *cInd, 1 );
1112 0 : foundPeak = 1;
1113 0 : move16();
1114 : }
1115 : }
1116 0 : IF( foundPeak == 0 ) /* Check if we still need to add the last point */
1117 : {
1118 0 : IF( GT_16( tempMag, minMag ) )
1119 : {
1120 0 : peakLoc[*cInd] = tempLoc;
1121 0 : move16();
1122 0 : peakMag[*cInd] = tempMag;
1123 0 : move16();
1124 0 : *cInd = add( *cInd, 1 );
1125 0 : move16();
1126 : }
1127 : }
1128 :
1129 : /* Create output */
1130 0 : FOR( i = 0; i < *cInd; i++ )
1131 : {
1132 0 : plocs[i] = *( indarr + peakLoc[i] );
1133 0 : move16();
1134 : }
1135 : }
1136 : ELSE /* This is a monotone function where an endpoint is the only peak */
1137 : {
1138 : {
1139 0 : xInd = 1;
1140 0 : move16();
1141 0 : if ( GT_16( x[0], x[1] ) )
1142 : {
1143 0 : xInd = 0;
1144 0 : move16();
1145 : }
1146 :
1147 0 : peakMag[0] = x[xInd];
1148 0 : move16();
1149 0 : IF( GT_16( peakMag[0], add( minMag, sel ) ) )
1150 : {
1151 0 : plocs[0] = *( indarr + xInd );
1152 0 : move16();
1153 0 : *cInd = 1;
1154 0 : move16();
1155 : }
1156 : ELSE
1157 : {
1158 0 : *cInd = 0;
1159 0 : move16();
1160 : }
1161 : }
1162 : }
1163 0 : }
1164 :
1165 : /*-----------------------------------------------------------------------------
1166 : * imax_fx()
1167 : *
1168 : * Get interpolated maximum position
1169 : *-----------------------------------------------------------------------------*/
1170 0 : static Word16 imax_fx( /* o: The location, relative to the middle of the 3 given data point, of the maximum. (Q15) */
1171 : const Word16 *y, /* i: The 3 given data points. */
1172 : const Word16 special /* i: -1 = left edge special case, 0 = normal, +1 = right edge special case */
1173 : )
1174 : {
1175 : Word16 posi;
1176 : Word16 y1, y2, y3, man, expo, edge;
1177 : const Word16 *pY;
1178 : Word32 numer, denom, sign, acc, y3_y1;
1179 : /* Seek the extremum of the parabola P(x) defined by 3 consecutive points
1180 : so that P([-1 0 1]) = [y1 y2 y3] */
1181 0 : pY = y;
1182 0 : y1 = *pY++, y2 = *pY++, y3 = *pY;
1183 0 : move16();
1184 0 : move16();
1185 0 : move16();
1186 :
1187 : /* The extremum value:
1188 : * y2i = -0.125f * SQR(y3_y1) / (y1+y3-2*y2)+y2
1189 : * is not computed. Alternatively, the derivative of the parabola evaluated at y=0,
1190 : * dP/dy|y=0, is used to determine whether the extremum is maximum or not.
1191 : */
1192 :
1193 : /* Compute the extremum location: posi = (y3 - y1)/(4*y2 - 2*y1 - 2*y3). */
1194 0 : y3_y1 = L_sub( y3, y1 );
1195 0 : acc = L_shl( y2, 1 ); /* N.B. y2 is multiplied by 2 not 4. */
1196 0 : acc = L_sub( acc, y1 ); /* N.B. Y1 is not multiplied by 2. */
1197 0 : denom = L_sub( acc, y3 ); /* N.B. Y3 is not multiplied by 2. */
1198 0 : sign = L_xor( y3_y1, denom ); /* Preserve the sign since div_s() only takes positive arguments. */
1199 0 : numer = L_abs( y3_y1 );
1200 0 : denom = L_abs( denom );
1201 0 : IF( numer == 0 )
1202 : {
1203 0 : return 0;
1204 : }
1205 0 : IF( denom == 0 )
1206 : {
1207 0 : return 0;
1208 : }
1209 : /* Although the output of ratio() is in Q14, adding the missing factor of 2 (See above)
1210 : * in the denominator, the output is now considered to be in Q15. */
1211 0 : man = ratio( numer, denom, &expo ); /* The mantissa is considered in Q15 */
1212 0 : posi = shr_sat( man, expo ); /* in Q15 (Due to saturation, it is automatically bound inside [-1.0,1.0].) */
1213 0 : if ( sign < 0 ) /* Restore the sign. */
1214 : {
1215 0 : posi = negate( posi );
1216 : }
1217 :
1218 : /* For both edges (left and right), the extremum found above may be minimum.
1219 : * It needs to reject the minimum. */
1220 0 : IF( special != 0 ) /* Either edge specical case. */
1221 : {
1222 0 : edge = 0x7fff; /* 1 in Q15 for the right edge special case */
1223 0 : move16();
1224 0 : if ( special < 0 )
1225 : {
1226 0 : edge = 0; /* Left edge special case */
1227 0 : move16();
1228 : }
1229 :
1230 : /* The derivative (slope) of the interpolating parabola = 2*A*y + B,
1231 : * where A = (y3 + y1)/2 - y2
1232 : * and B = (y3 - y1)/2.
1233 : * Therefore, the slope at y=0 is simply B. Use this slope to determine
1234 : * if the parabola is concave upward or downward.
1235 : */
1236 0 : IF( posi > 0 ) /* The extremum is in between the middle and the right given data points. */
1237 : {
1238 0 : IF( LE_16( y3, y1 ) ) /* Check the slope at y=0, i.e., at the middle given data point. */
1239 : {
1240 0 : posi = edge; /* minimum case */
1241 0 : move16();
1242 : }
1243 : ELSE
1244 : {
1245 0 : posi = sub( 0x7fff, posi ); /* maximum case */
1246 : }
1247 : }
1248 : ELSE /* The extremum is in between the left and the middle given data points. */
1249 : {
1250 0 : IF( GE_16( y3, y1 ) )
1251 : {
1252 0 : posi = edge; /* minimum case */
1253 0 : move16();
1254 : }
1255 : ELSE
1256 : {
1257 0 : posi = add( 0x7fff, posi ); /* maximum case */
1258 : }
1259 : }
1260 : }
1261 0 : return posi; /* Q15. The position either left or right relative to the index of the middle of the 3 given data points. */
1262 : }
1263 :
1264 : /*-----------------------------------------------------------------------------
1265 : * spec_ana_fx()
1266 : *
1267 : * Spectral analysis
1268 : *-----------------------------------------------------------------------------*/
1269 :
1270 127 : static void ivas_spec_ana_fx(
1271 : const Word16 *prevsynth, /* i : Input signal */
1272 : Word16 *plocs, /* o : The indicies of the identified peaks Q0 */
1273 : Word32 *plocsi, /* o : Interpolated positions of the identified peaks Q16 */
1274 : Word16 *num_plocs, /* o : Number of identified peaks Q0 */
1275 : Word16 *X_sav, /* o : Stored fft spectrum */
1276 : const Word16 output_frame, /* i : Frame length Q0 */
1277 : const Word16 bwidth_fx, /* i : Encoded bandwidth index Q0 */
1278 : Word16 *Q, /* o : Q value of the fft spectrum */
1279 : const Word16 element_mode, /* i : IVAS element mode */
1280 : Word16 *noise_fac, /* o : for few peaks zeroing valleys decision making Q15*/
1281 : const Word16 pcorr )
1282 : {
1283 127 : Word16 Lprot, LprotLog2Minus1 = 0, hamm_len2 = 0, Lprot2, Lprot2_1, m, n;
1284 127 : const Word16 *pFftTbl = NULL;
1285 : Word16 xfp[L_PROT48k];
1286 : Word32 magSq[L_PROT48k / 2 + 1], *pMagSq;
1287 : Word16 *pXfp, *pXfp1, *pXsav, *pPlocs;
1288 : Word16 Xmax, Xmin, sel, man, expo, expoBy2;
1289 : Word16 sinTblOffset, rectLength, fraction, special;
1290 : Word32 *pPlocsi;
1291 : Word32 acc;
1292 : Word16 stop_band_start;
1293 : Word16 stop_band_length;
1294 127 : const Word16 *w_hamm = NULL;
1295 : Word16 window_corr, window_corr_step;
1296 : Word16 currPlocs, endPlocs, nJacob, k, i;
1297 : Word32 sig, noise, st_point, end_point;
1298 : Word32 xfp_32[3]; // Q + 16
1299 :
1300 127 : move16(); // LprotLog2Minus1
1301 127 : move16(); // hamm_len2
1302 127 : Lprot = 512; /* 1536=(2*output_frame)*1024/1280; */
1303 127 : move16();
1304 :
1305 127 : sinTblOffset = 0;
1306 127 : move16();
1307 :
1308 127 : IF( EQ_16( output_frame, L_FRAME48k ) )
1309 : {
1310 67 : Lprot = L_PROT48k; /* 1536=(2*output_frame)*1024/1280; */
1311 67 : move16();
1312 67 : hamm_len2 = L_PROT_HAMM_LEN2_48k; /* half Hamming window = 288 */
1313 67 : move16();
1314 67 : w_hamm = w_hamm_sana48k_2_fx;
1315 : }
1316 60 : ELSE IF( EQ_16( output_frame, L_FRAME32k ) )
1317 : {
1318 51 : Lprot = L_PROT32k; /* 1024 */
1319 51 : move16();
1320 51 : sinTblOffset = 4;
1321 51 : move16();
1322 51 : hamm_len2 = L_PROT_HAMM_LEN2_32k; /* half Hamming window = 192 */
1323 51 : move16();
1324 51 : pFftTbl = FFT_W512; /* Table for 1024-point real input FFT */
1325 51 : LprotLog2Minus1 = 9; /* FFT stages for complex input FFT */
1326 51 : move16();
1327 51 : w_hamm = w_hamm_sana32k_2_fx;
1328 : }
1329 : ELSE
1330 : {
1331 9 : Lprot = 512;
1332 9 : move16();
1333 9 : sinTblOffset = 8;
1334 9 : move16();
1335 9 : hamm_len2 = L_PROT_HAMM_LEN2_16k; /* half Hamming window = 96 */
1336 9 : move16();
1337 9 : pFftTbl = FFT_W256; /* Table for 512-point real input FFT */
1338 9 : LprotLog2Minus1 = 8; /* FFT stages for complex input FFT */
1339 9 : move16();
1340 9 : w_hamm = w_hamm_sana16k_2_fx;
1341 : }
1342 :
1343 127 : Lprot2 = shr( Lprot, 1 );
1344 127 : Lprot2_1 = add( Lprot2, 1 );
1345 127 : rectLength = sub( Lprot, shl( hamm_len2, 1 ) ); /* The length of the rectangular portion of the Hamming-Rectangular window. */
1346 :
1347 127 : *Q = s_max( 0, sub( Exp16Array( Lprot, prevsynth ), 1 ) );
1348 127 : move16();
1349 127 : Copy_Scale_sig( prevsynth, xfp, Lprot, *Q );
1350 :
1351 :
1352 127 : IF( EQ_16( output_frame, L_FRAME48k ) )
1353 : {
1354 : /* Apply hamming-rect window */
1355 67 : IF( element_mode == EVS_MONO )
1356 : {
1357 0 : windowing( xfp, xfp, w_hamm_sana48k_2_fx, rectLength, hamm_len2 );
1358 : }
1359 : ELSE
1360 : {
1361 67 : window_corr = w_hamm[0];
1362 67 : move16();
1363 67 : window_corr_step = idiv1616( w_hamm[0], hamm_len2 );
1364 19363 : FOR( i = 0; i < hamm_len2; i++ )
1365 : {
1366 19296 : xfp[i] = mult_r( shl( prevsynth[i], *Q ), sub( w_hamm[i], window_corr ) );
1367 19296 : move16();
1368 19296 : xfp[Lprot - i - 1] = mult_r( shl( prevsynth[Lprot - i - 1], *Q ), sub( w_hamm[i], window_corr ) );
1369 19296 : move16();
1370 19296 : window_corr = sub( window_corr, window_corr_step );
1371 : }
1372 : }
1373 : /* Spectrum */
1374 67 : fft3_fx( xfp, xfp, Lprot );
1375 : }
1376 : ELSE
1377 : {
1378 60 : IF( element_mode == EVS_MONO )
1379 : {
1380 : /* Apply hamming-rect window */
1381 0 : windowing_ROM_optimized( xfp, xfp, sinTblOffset, rectLength, hamm_len2 );
1382 : }
1383 : ELSE
1384 : {
1385 60 : window_corr = w_hamm[0];
1386 60 : move16();
1387 60 : window_corr_step = idiv1616( w_hamm[0], hamm_len2 );
1388 10716 : FOR( i = 0; i < hamm_len2; i++ )
1389 : {
1390 10656 : xfp[i] = mult_r( shl( prevsynth[i], *Q ), sub( w_hamm[i], window_corr ) );
1391 10656 : move16();
1392 10656 : xfp[Lprot - i - 1] = mult_r( shl( prevsynth[Lprot - i - 1], *Q ), sub( w_hamm[i], window_corr ) );
1393 10656 : move16();
1394 10656 : window_corr = sub( window_corr, window_corr_step );
1395 : }
1396 : }
1397 : /* Spectrum */
1398 60 : r_fft_fx_lc( pFftTbl, Lprot, Lprot2, LprotLog2Minus1, xfp, xfp, 1 );
1399 : }
1400 :
1401 : /* Apply zeroing of non-coded FFT spectrum */
1402 127 : IF( GT_16( output_frame, inner_frame_tbl[bwidth_fx] ) )
1403 : {
1404 16 : stop_band_start = shl( 128, bwidth_fx );
1405 16 : stop_band_length = sub( Lprot, shl( stop_band_start, 1 ) );
1406 16 : stop_band_start = add( stop_band_start, 1 );
1407 16 : set16_fx( xfp + stop_band_start, 0, stop_band_length );
1408 : }
1409 :
1410 127 : pXfp = xfp;
1411 127 : pXsav = X_sav;
1412 :
1413 159871 : FOR( m = 0; m < Lprot; m++ )
1414 : {
1415 159744 : *pXsav++ = *pXfp++;
1416 159744 : move16();
1417 : }
1418 :
1419 : /* Magnitude representation */
1420 127 : fft_spec2_fx( xfp, magSq, Lprot );
1421 :
1422 : /* Compute xfp[m] = sqrt(magSq[m]) */
1423 127 : pXfp = xfp;
1424 127 : pMagSq = magSq;
1425 80126 : FOR( m = 0; m < Lprot2_1; m++ )
1426 : {
1427 79999 : IF( *pMagSq == 0 )
1428 : {
1429 13096 : *pXfp++ = extract_l( *pMagSq++ ); /* magSq[] is zero */
1430 13096 : move16();
1431 : }
1432 : ELSE
1433 : {
1434 66903 : expo = norm_l( *pMagSq ); /* exponent */
1435 66903 : man = extract_h( L_shl( *pMagSq++, expo ) ); /* mantissa */
1436 66903 : man = sqrt2ndOrder( man );
1437 66903 : expoBy2 = shr( expo, 1 ); /* Divided by 2-- square root operation. */
1438 66903 : IF( s_and( expo, 1 ) == 0 ) /* Check even or odd. */
1439 : {
1440 36972 : man = mult_r( man, FEC_HQ_ECU_ROOT2 ); /* FEC_HQ_ECU_ROOT2 is sqrt(2) in Q14 */
1441 36972 : expoBy2 = sub( expoBy2, 1 );
1442 : }
1443 66903 : *pXfp++ = shr_sat( man, expoBy2 );
1444 66903 : move16(); /* Denormalize the mantissa back to Q0. */
1445 : }
1446 : }
1447 :
1448 : /* Find maximum and minimum. */
1449 127 : maximum_fx( xfp, Lprot2_1, &Xmax );
1450 127 : minimum_fx( xfp, Lprot2_1, &Xmin );
1451 127 : IF( element_mode == EVS_MONO )
1452 : {
1453 0 : sel = mult_r( sub( Xmax, Xmin ), CMPLMNT_PFIND_SENS_FX );
1454 : }
1455 : ELSE
1456 : {
1457 127 : sel = mult_r( sub( Xmax, Xmin ), CMPLMNT_ST_PFIND_SENS_FX );
1458 : }
1459 127 : ivas_peakfinder_fx( xfp, Lprot2_1, plocs, num_plocs, sel, TRUE );
1460 :
1461 :
1462 : /* Currently not the pitch correlation but some LF correlation */
1463 127 : if ( element_mode != EVS_MONO && *num_plocs > 50 && pcorr < 19661 /* 0.6f in Q15 */ )
1464 : {
1465 5 : *num_plocs = 0;
1466 5 : move16();
1467 : }
1468 :
1469 127 : IF( element_mode == EVS_MONO )
1470 : {
1471 :
1472 : /* Refine peaks */
1473 0 : pPlocsi = plocsi;
1474 0 : pPlocs = plocs;
1475 0 : n = sub( *num_plocs, 1 ); /* -1 so as to exclude the very last peak. */
1476 : /* Special case-- The very 1st peak if it is at 0 index position */
1477 0 : IF( *pPlocs == 0 ) /* Only the very 1st peak is possible the peak at 0 index position. */
1478 : {
1479 0 : fraction = imax_fx( xfp, -1 ); /* -1 signifies special left edge case. */
1480 0 : acc = L_deposit_h( *pPlocs++ ); /* N.B., (*pPlocs) must be zero here. */
1481 0 : *pPlocsi++ = L_mac( acc, fraction, 1 );
1482 0 : move32(); /* in Q16 */
1483 0 : n = sub( n, 1 ); /* This special case is taken care of-- one less to go */
1484 : }
1485 : /* All peaks except the very last peak but including the very 1st one if it has not been taken care of. */
1486 0 : pXfp1 = xfp - 1;
1487 0 : FOR( m = 0; m < n; m++ ) /* Loop through up to the last but one peak. (The last one is excluded.) */
1488 : {
1489 0 : pXfp = pXfp1 + *pPlocs;
1490 0 : fraction = imax_fx( pXfp, 0 ); /* in Q15 */
1491 0 : acc = L_deposit_h( *pPlocs++ );
1492 0 : *pPlocsi++ = L_mac( acc, fraction, 1 );
1493 0 : move32(); /* in Q16. Append the fractional part to the integral part. */
1494 : }
1495 0 : IF( n >= 0 )
1496 : {
1497 : /* Special case-- The very last peak */
1498 0 : pXfp = pXfp1 + *pPlocs;
1499 0 : IF( EQ_16( *pPlocs, Lprot2 ) ) /* Only the very last peak is possible the peak at Lprot2 index position. */
1500 : {
1501 0 : pXfp--; /* Special case needs extra decrement */
1502 0 : special = 1; /* Signify special right edge case. */
1503 0 : move16();
1504 : }
1505 : ELSE
1506 : {
1507 0 : special = 0;
1508 0 : move16();
1509 : }
1510 0 : fraction = imax_fx( pXfp, special ); /* in Q15 */
1511 0 : acc = L_deposit_h( *pPlocs );
1512 0 : *pPlocsi = L_mac( acc, fraction, 1 );
1513 0 : move32(); /* in Q16. Append the fractional part to the integral part. */
1514 : }
1515 : }
1516 : ELSE
1517 : {
1518 127 : Lprot2 = shr( Lprot, 1 );
1519 127 : Lprot2_1 = add( Lprot2, 1 );
1520 :
1521 : /* Refine peaks */
1522 127 : pPlocsi = plocsi;
1523 127 : pPlocs = plocs;
1524 127 : n = *num_plocs; /* number of peaks to process */
1525 127 : move16();
1526 :
1527 : /* Special case-- The very 1st peak if it is at 0 index position (DC) */
1528 : /* With DELTA_CORR_F0_INT == 2 one needs to handle both *pPlocs==0 and *pPlocs==1 */
1529 : // IF( n > 0 && *pPlocs == 0 ) /* Very 1st peak position possible to have a peak at 0/DC index position. */
1530 127 : test();
1531 127 : IF( n > 0 && *pPlocs == 0 ) /* Very 1st peak position possible to have a peak at 0/DC index position. */
1532 : {
1533 11 : Copy_Scale_sig_16_32_no_sat( &xfp[*pPlocs], xfp_32, 3, Q15 ); // Q + 15
1534 11 : acc = L_deposit_h( *pPlocs ); // Q16
1535 11 : *pPlocsi++ = L_add( acc, L_shl( imax_pos_fx( xfp_32 ) /* Q15 */, 1 ) ); // Q16
1536 11 : move32();
1537 11 : pPlocs++;
1538 11 : n = sub( n, 1 );
1539 : }
1540 :
1541 127 : test();
1542 127 : IF( n > 0 && EQ_16( *pPlocs, 1 ) ) /* Also 2nd peak position uses DC which makes jacobsen unsuitable. */
1543 : {
1544 11 : Copy_Scale_sig_16_32_no_sat( &xfp[*pPlocs - 1], xfp_32, 3, Q15 ); // Q + 15
1545 11 : acc = L_deposit_h( sub( *pPlocs, 1 ) ); // Q16
1546 11 : *pPlocsi++ = L_add( acc, L_shl( imax_pos_fx( xfp_32 ) /* Q15 */, 1 ) ); // Q16
1547 11 : move32();
1548 11 : currPlocs = *pPlocs++; // Q16
1549 11 : move16();
1550 11 : n = sub( n, 1 );
1551 : }
1552 :
1553 : /* All remaining peaks except the very last two possible integer positions */
1554 127 : currPlocs = *pPlocs++;
1555 127 : move16();
1556 127 : endPlocs = sub( Lprot2_1, DELTA_CORR_F0_INT ); /* last *pPlocs position for Jacobsen */
1557 :
1558 : /* precompute number of turns based on endpoint integer location and make into a proper for loop */
1559 127 : IF( n > 0 )
1560 : {
1561 121 : nJacob = n;
1562 121 : move16();
1563 121 : if ( sub( endPlocs, plocs[*num_plocs - 1] ) <= 0 )
1564 : {
1565 0 : nJacob = sub( nJacob, 1 );
1566 : }
1567 :
1568 2321 : FOR( k = 0; k < nJacob; k++ )
1569 : {
1570 2200 : fraction = ivas_imax2_jacobsen_mag_fx( &( X_sav[currPlocs - 1] ), &( X_sav[Lprot - 1 - currPlocs] ) ); /* in Q15 */
1571 2200 : acc = L_deposit_h( currPlocs ); // Q16
1572 2200 : *pPlocsi++ = L_mac( acc, fraction, 1 ); // Q16
1573 2200 : move32();
1574 2200 : currPlocs = *pPlocs++; // Q16
1575 2200 : move16();
1576 : }
1577 121 : n = sub( n, nJacob );
1578 : }
1579 :
1580 : /* At this point there should at most two plocs left to process */
1581 : /* the position before fs/2 and fs/2 both use the same magnitude points */
1582 127 : IF( n > 0 )
1583 : {
1584 : /* [ . . . . . . . ] Lprot/2+1 positions */
1585 : /* | | | */
1586 : /* 0 (Lprot/2-2) (Lprot/2) */
1587 :
1588 0 : IF( EQ_16( currPlocs, ( sub( Lprot2_1, DELTA_CORR_F0_INT ) ) ) ) /* Also 2nd last peak position uses fs/2 which makes jacobsen less suitable. */
1589 : {
1590 0 : Copy_Scale_sig_16_32_no_sat( &xfp[currPlocs - 1], xfp_32, 3, Q15 ); // Q + 15
1591 0 : acc = L_deposit_h( sub( currPlocs, 1 ) ); // Q16
1592 0 : *pPlocsi++ = L_add( acc, L_shl( imax_pos_fx( xfp_32 ) /* Q15 */, 1 ) ); // Q16
1593 0 : move32();
1594 0 : currPlocs = *pPlocs++; // Q16
1595 0 : move16();
1596 0 : n = sub( n, 1 );
1597 : }
1598 :
1599 : /* Here the only remaining point would be a fs/2 plocs */
1600 : /* pXfp = xfp + sub(Lprot2,1); already set just a reminder where it
1601 : * whould point */
1602 0 : IF( n > 0 ) /* fs/2 which makes special case . */
1603 : {
1604 0 : Copy_Scale_sig_16_32_no_sat( &xfp[currPlocs - 2], xfp_32, 3, Q15 ); // Q + 15
1605 0 : acc = L_deposit_h( sub( currPlocs, 2 ) ); // Q16
1606 0 : *pPlocsi++ = L_add( acc, L_shl( imax_pos_fx( xfp_32 ) /* Q15 */, 1 ) ); // Q16
1607 0 : move32();
1608 0 : currPlocs = *pPlocs++; // Q16
1609 0 : move16();
1610 0 : n = sub( n, 1 );
1611 : }
1612 : }
1613 :
1614 : /* For few peaks decide noise floor attenuation */
1615 127 : test();
1616 127 : IF( LT_16( *num_plocs, 3 ) && *num_plocs > 0 )
1617 : {
1618 9 : sig = L_add( sum16_32_fx( xfp, Lprot2_1 ), 1 );
1619 :
1620 : /*excluding peaks and neighboring bins*/
1621 20 : FOR( i = 0; i < *num_plocs; i++ )
1622 : {
1623 11 : st_point = s_max( 0, sub( plocs[i], DELTA_CORR ) );
1624 11 : end_point = s_min( sub( Lprot2_1, 1 ), add( plocs[i], DELTA_CORR ) );
1625 11 : set16_fx( &xfp[st_point], 0, extract_l( L_add( L_sub( end_point, st_point ), 1 ) ) );
1626 : }
1627 9 : noise = L_add( sum16_32_fx( xfp, Lprot2_1 ), 1 );
1628 :
1629 9 : IF( LT_32( noise, Mpy_32_32( 64424509 /* 0.03 in Q31 */, sig ) ) )
1630 : {
1631 4 : *noise_fac = 16384; /* 0.5f in Q15 */
1632 4 : move16();
1633 : }
1634 : ELSE
1635 : {
1636 5 : *noise_fac = 32767; /* 1.0f in Q15 */
1637 5 : move16();
1638 : }
1639 : }
1640 : }
1641 127 : }
1642 :
1643 0 : static void spec_ana_fx(
1644 : const Word16 *prevsynth, /* i : Input signal */
1645 : Word16 *plocs, /* o : The indicies of the identified peaks Q0 */
1646 : Word32 *plocsi, /* o : Interpolated positions of the identified peaks Q16 */
1647 : Word16 *num_plocs, /* o : Number of identified peaks Q0 */
1648 : Word16 *X_sav, /* o : Stored fft spectrum */
1649 : const Word16 output_frame, /* i : Frame length Q0 */
1650 : const Word16 bwidth_fx, /* i : Encoded bandwidth index Q0 */
1651 : Word16 *Q /* o : Q value of the fft spectrum */
1652 : )
1653 : {
1654 : Word16 Lprot, LprotLog2Minus1, hamm_len2, Lprot2, Lprot2_1, m, n;
1655 0 : const Word16 *pFftTbl = NULL;
1656 : Word16 xfp[L_PROT48k];
1657 : Word32 magSq[L_PROT48k / 2 + 1], *pMagSq;
1658 : Word16 *pXfp, *pXfp1, *pXsav, *pPlocs;
1659 : Word16 Xmax, Xmin, sel, man, expo, expoBy2;
1660 : Word16 sinTblOffset, rectLength, fraction, special;
1661 : Word32 *pPlocsi;
1662 : Word32 acc;
1663 : Word16 stop_band_start;
1664 : Word16 stop_band_length;
1665 :
1666 0 : LprotLog2Minus1 = 0;
1667 0 : hamm_len2 = 0;
1668 0 : move16(); // LprotLog2Minus1
1669 0 : move16(); // hamm_len2
1670 0 : Lprot = 512; /* 1536=(2*output_frame)*1024/1280; */
1671 0 : move16();
1672 :
1673 0 : sinTblOffset = 0;
1674 0 : move16();
1675 :
1676 0 : IF( EQ_16( output_frame, L_FRAME48k ) )
1677 : {
1678 0 : Lprot = L_PROT48k; /* 1536=(2*output_frame)*1024/1280; */
1679 0 : move16();
1680 0 : hamm_len2 = L_PROT_HAMM_LEN2_48k; /* half Hamming window = 288 */
1681 0 : move16();
1682 : }
1683 0 : ELSE IF( EQ_16( output_frame, L_FRAME32k ) )
1684 : {
1685 0 : Lprot = L_PROT32k; /* 1024 */
1686 0 : move16();
1687 0 : sinTblOffset = 4;
1688 0 : move16();
1689 0 : hamm_len2 = L_PROT_HAMM_LEN2_32k; /* half Hamming window = 192 */
1690 0 : move16();
1691 0 : pFftTbl = FFT_W512; /* Table for 1024-point real input FFT */
1692 0 : LprotLog2Minus1 = 9; /* FFT stages for complex input FFT */
1693 0 : move16();
1694 : }
1695 : ELSE
1696 : {
1697 0 : Lprot = 512;
1698 0 : move16();
1699 0 : sinTblOffset = 8;
1700 0 : move16();
1701 0 : hamm_len2 = L_PROT_HAMM_LEN2_16k; /* half Hamming window = 96 */
1702 0 : move16();
1703 0 : pFftTbl = FFT_W256; /* Table for 512-point real input FFT */
1704 0 : LprotLog2Minus1 = 8; /* FFT stages for complex input FFT */
1705 0 : move16();
1706 : }
1707 :
1708 0 : Lprot2 = shr( Lprot, 1 );
1709 0 : Lprot2_1 = add( Lprot2, 1 );
1710 0 : rectLength = sub( Lprot, shl( hamm_len2, 1 ) ); /* The length of the rectangular portion of the Hamming-Rectangular window. */
1711 :
1712 0 : *Q = s_max( 0, sub( Exp16Array( Lprot, prevsynth ), 1 ) );
1713 0 : move16();
1714 0 : Copy_Scale_sig( prevsynth, xfp, Lprot, *Q );
1715 :
1716 0 : IF( EQ_16( output_frame, L_FRAME48k ) )
1717 : {
1718 : /* Apply hamming-rect window */
1719 : {
1720 0 : windowing( xfp, xfp, w_hamm_sana48k_2_fx, rectLength, hamm_len2 );
1721 : }
1722 : /* Spectrum */
1723 0 : fft3_fx( xfp, xfp, Lprot );
1724 : }
1725 : ELSE
1726 : {
1727 : {
1728 : /* Apply hamming-rect window */
1729 0 : windowing_ROM_optimized( xfp, xfp, sinTblOffset, rectLength, hamm_len2 );
1730 : }
1731 : /* Spectrum */
1732 0 : r_fft_fx_lc( pFftTbl, Lprot, Lprot2, LprotLog2Minus1, xfp, xfp, 1 );
1733 : }
1734 :
1735 : /* Apply zeroing of non-coded FFT spectrum */
1736 0 : IF( GT_16( output_frame, inner_frame_tbl[bwidth_fx] ) )
1737 : {
1738 0 : stop_band_start = shl( 128, bwidth_fx );
1739 0 : stop_band_length = sub( Lprot, shl( stop_band_start, 1 ) );
1740 0 : stop_band_start = add( stop_band_start, 1 );
1741 0 : set16_fx( xfp + stop_band_start, 0, stop_band_length );
1742 : }
1743 :
1744 0 : pXfp = xfp;
1745 0 : pXsav = X_sav;
1746 0 : FOR( m = 0; m < Lprot; m++ )
1747 : {
1748 0 : *pXsav++ = *pXfp++;
1749 0 : move16();
1750 : }
1751 :
1752 : /* Magnitude representation */
1753 0 : fft_spec2_fx( xfp, magSq, Lprot );
1754 :
1755 : /* Compute xfp[m] = sqrt(magSq[m]) */
1756 0 : pXfp = xfp;
1757 0 : pMagSq = magSq;
1758 0 : FOR( m = 0; m < Lprot2_1; m++ )
1759 : {
1760 0 : IF( *pMagSq == 0 )
1761 : {
1762 0 : *pXfp++ = extract_l( *pMagSq++ ); /* magSq[] is zero */
1763 : }
1764 : ELSE
1765 : {
1766 0 : expo = norm_l( *pMagSq ); /* exponent */
1767 0 : man = extract_h( L_shl( *pMagSq++, expo ) ); /* mantissa */
1768 0 : man = sqrt2ndOrder( man );
1769 0 : expoBy2 = shr( expo, 1 ); /* Divided by 2-- square root operation. */
1770 0 : IF( s_and( expo, 1 ) == 0 ) /* Check even or odd. */
1771 : {
1772 0 : man = mult_r( man, FEC_HQ_ECU_ROOT2 ); /* FEC_HQ_ECU_ROOT2 is sqrt(2) in Q14 */
1773 0 : expoBy2 = sub( expoBy2, 1 );
1774 : }
1775 0 : *pXfp++ = shr_sat( man, expoBy2 );
1776 0 : move16(); /* Denormalize the mantissa back to Q0. */
1777 : }
1778 : }
1779 :
1780 : /* Find maximum and minimum. */
1781 0 : maximum_fx( xfp, Lprot2_1, &Xmax );
1782 0 : minimum_fx( xfp, Lprot2_1, &Xmin );
1783 : {
1784 0 : sel = mult_r( sub( Xmax, Xmin ), CMPLMNT_PFIND_SENS_FX );
1785 : }
1786 0 : peakfinder_fx( xfp, Lprot2_1, plocs, num_plocs, sel );
1787 :
1788 :
1789 : {
1790 :
1791 : /* Refine peaks */
1792 0 : pPlocsi = plocsi;
1793 0 : pPlocs = plocs;
1794 0 : n = sub( *num_plocs, 1 ); /* -1 so as to exclude the very last peak. */
1795 : /* Special case-- The very 1st peak if it is at 0 index position */
1796 0 : IF( *pPlocs == 0 ) /* Only the very 1st peak is possible the peak at 0 index position. */
1797 : {
1798 0 : fraction = imax_fx( xfp, -1 ); /* -1 signifies special left edge case. */
1799 0 : acc = L_deposit_h( *pPlocs++ ); /* N.B., (*pPlocs) must be zero here. */
1800 0 : *pPlocsi++ = L_mac( acc, fraction, 1 );
1801 0 : move32(); /* in Q16 */
1802 0 : n = sub( n, 1 ); /* This special case is taken care of-- one less to go */
1803 : }
1804 : /* All peaks except the very last peak but including the very 1st one if it has not been taken care of. */
1805 0 : pXfp1 = xfp - 1;
1806 0 : FOR( m = 0; m < n; m++ ) /* Loop through up to the last but one peak. (The last one is excluded.) */
1807 : {
1808 0 : pXfp = pXfp1 + *pPlocs;
1809 0 : fraction = imax_fx( pXfp, 0 ); /* in Q15 */
1810 0 : acc = L_deposit_h( *pPlocs++ );
1811 0 : *pPlocsi++ = L_mac( acc, fraction, 1 );
1812 0 : move32(); /* in Q16. Append the fractional part to the integral part. */
1813 : }
1814 0 : IF( n >= 0 )
1815 : {
1816 : /* Special case-- The very last peak */
1817 0 : pXfp = pXfp1 + *pPlocs;
1818 0 : IF( EQ_16( *pPlocs, Lprot2 ) ) /* Only the very last peak is possible the peak at Lprot2 index position. */
1819 : {
1820 0 : pXfp--; /* Special case needs extra decrement */
1821 0 : special = 1; /* Signify special right edge case. */
1822 0 : move16();
1823 : }
1824 : ELSE
1825 : {
1826 0 : special = 0;
1827 0 : move16();
1828 : }
1829 0 : fraction = imax_fx( pXfp, special ); /* in Q15 */
1830 0 : acc = L_deposit_h( *pPlocs );
1831 0 : *pPlocsi = L_mac( acc, fraction, 1 );
1832 0 : move32(); /* in Q16. Append the fractional part to the integral part. */
1833 : }
1834 : }
1835 0 : }
1836 :
1837 : /*-------------------------------------------------------------------*
1838 : * subst_spec_fx()
1839 : *
1840 : * Substitution spectrum calculation
1841 : *-------------------------------------------------------------------*/
1842 :
1843 220 : static void ivas_subst_spec_fx(
1844 : const Word16 *plocs, /* i : The indices of the identified peaks Q0 */
1845 : const Word32 *plocsi, /* i : Interpolated positions of the identified peaks Q16 */
1846 : Word16 *num_plocs, /* i/o : Number of identified peaks Q0 */
1847 : const Word16 time_offs, /* i : Time offset Q0 */
1848 : Word16 *X, /* i/o : FFT spectrum */
1849 : const Word16 *mag_chg, /* i : Magnitude modification Q15 */
1850 : const Word16 ph_dith, /* i : Phase dither, 2*PI is not included. (Q15, i.e., between 0.0 and 1.0) */
1851 : const Word16 *is_trans, /* i : Transient flags (either 0 or 1) */
1852 : const Word16 output_frame, /* i : Frame length Q0 */
1853 : Word16 *seed, /* i/o : Random seed */
1854 : const Word16 *alpha, /* i : Magnitude modification factors for fade to average Q15 */
1855 : const Word16 *beta, /* i : Magnitude modification factors for fade to average Q15 */
1856 : Word16 beta_mute, /* i : Factor for long-term mute Q15 */
1857 : const Word16 *Xavg, /* i : Frequency group averages to fade to Q0 */
1858 : const Word16 element_mode, /* i : IVAS element mode */
1859 : const Word16 ph_ecu_lookahead, /* i : Phase ECU lookahead */
1860 : const Word16 noise_fac /* i : noise factor Q15 */
1861 : )
1862 : {
1863 : Word16 Xph_short;
1864 : Word32 corr_phase[MAX_PLOCS], Xph;
1865 : Word32 *pCorrPhase;
1866 : Word16 cos_F, sin_F, tmp;
1867 : Word16 Lprot, m, i, e, im_ind, delta_corr_up, delta_corr_dn, delta_tmp;
1868 : Word32 tmp1;
1869 : Word16 j, re, im, *pReX, *pImX, lastPeak, lprotBy2Minus1, segmentLen;
1870 : Word16 pkLocation_1, pkLocation, pkLocation1;
1871 : const Word16 *pPlocs;
1872 : const Word32 *pPlocsi;
1873 : Word32 acc;
1874 : Word16 Lecu;
1875 : Word16 Lprot_inv;
1876 : Word16 k;
1877 : Word16 tmp2;
1878 : Word16 alpha_local;
1879 : Word16 beta_local;
1880 : Word16 expo;
1881 : Word16 one_peak_flag_mask;
1882 : Word16 mag_chg_local; /*for peak attenuation in burst */
1883 :
1884 220 : Lprot = 512;
1885 220 : move16();
1886 220 : Lprot_inv = 8192;
1887 220 : move16();
1888 220 : Lecu = shl( output_frame, 1 );
1889 :
1890 220 : IF( EQ_16( output_frame, L_FRAME48k ) )
1891 : {
1892 155 : Lprot = L_PROT48k; /* 1536=(2*output_frame)*1024/1280; */
1893 155 : move16();
1894 155 : Lprot_inv = 2731; /* Q22 */
1895 155 : move16();
1896 : }
1897 65 : ELSE IF( EQ_16( output_frame, L_FRAME32k ) )
1898 : {
1899 54 : Lprot = L_PROT32k; /* 1024 */
1900 54 : move16();
1901 54 : Lprot_inv = 4096; /* Q22 */
1902 54 : move16();
1903 : }
1904 : ELSE
1905 : {
1906 11 : Lprot = 512;
1907 11 : move16();
1908 11 : Lprot_inv = 8192; /* Q22 */
1909 11 : move16();
1910 : }
1911 :
1912 : /* Correction phase of the identified peaks */
1913 220 : IF( s_or( is_trans[0], is_trans[1] ) != 0 )
1914 : {
1915 11 : *num_plocs = 0;
1916 11 : move16();
1917 : }
1918 : ELSE
1919 : {
1920 : // tmp = NS2SA(output_frame*50,PH_ECU_ALDO_OLP2_NS-PH_ECU_LOOKAHEAD_NS);
1921 209 : tmp = NS2SA_FX2( L_mult0( output_frame, 50 ), PH_ECU_ALDO_OLP2_NS );
1922 209 : move16();
1923 209 : tmp = sub( tmp, ph_ecu_lookahead );
1924 209 : tmp = add( tmp, sub( Lecu, shr( sub( Lecu, Lprot ), 1 ) ) );
1925 209 : tmp = sub( tmp, shr( output_frame, 1 ) );
1926 209 : tmp1 = L_mac0( L_mult0( tmp, Lprot_inv ), time_offs, Lprot_inv ); /* Q22 */
1927 :
1928 209 : pPlocsi = plocsi;
1929 209 : pCorrPhase = corr_phase;
1930 7024 : FOR( m = 0; m < *num_plocs; m++ )
1931 : {
1932 6815 : acc = L_shl( Mpy_32_32( *pPlocsi++, tmp1 ), 9 ); /* 16+22+9-31 = 16*/
1933 6815 : *pCorrPhase++ = acc; /* in Q16. 2*PI is not included. */
1934 6815 : move32();
1935 : }
1936 : }
1937 220 : one_peak_flag_mask = 32767 /* 1.0f in Q15 */; /* all ones mask -> keep */
1938 220 : move16();
1939 220 : IF( element_mode != EVS_MONO )
1940 : {
1941 220 : test();
1942 220 : if ( ( *num_plocs > 0 ) && ( sub( *num_plocs, 3 ) < 0 ) )
1943 : {
1944 13 : one_peak_flag_mask = noise_fac; /* all zeroes mask -> zero */
1945 13 : move16();
1946 : }
1947 220 : IF( *num_plocs == 0 )
1948 : {
1949 16 : X[0] = 0; /* reset DC if there are no peaks */
1950 16 : move16();
1951 16 : X[Lprot / 2] = 0; /* also reset fs/2 if there are no peaks */
1952 16 : move16();
1953 : }
1954 : }
1955 220 : lprotBy2Minus1 = sub( shr( Lprot, 1 ), 1 );
1956 220 : i = 1;
1957 220 : move16();
1958 220 : k = 0;
1959 220 : move16();
1960 220 : im_ind = sub( Lprot, 1 );
1961 220 : move16();
1962 220 : pReX = X + i;
1963 220 : pImX = X + im_ind;
1964 220 : pPlocs = plocs;
1965 220 : pCorrPhase = corr_phase;
1966 220 : pkLocation = *pPlocs; /* N.B. No post-increment */
1967 220 : move16();
1968 220 : pkLocation1 = *pPlocs++;
1969 220 : move16();
1970 220 : lastPeak = sub( *num_plocs, 1 );
1971 7035 : FOR( m = 0; m < *num_plocs; m++ )
1972 : {
1973 6815 : delta_corr_dn = DELTA_CORR;
1974 6815 : move16();
1975 6815 : delta_corr_up = DELTA_CORR;
1976 6815 : move16();
1977 :
1978 6815 : pkLocation_1 = pkLocation; /* plocs[m - 1] */
1979 6815 : move16();
1980 6815 : pkLocation = pkLocation1; /* plocs[m] */
1981 6815 : move16();
1982 6815 : pkLocation1 = *pPlocs++; /* plocs[m + 1] */
1983 6815 : move16();
1984 6815 : IF( m > 0 )
1985 : {
1986 6611 : delta_tmp = shr( sub( sub( pkLocation, pkLocation_1 ), 1 ), 1 );
1987 6611 : if ( LT_16( delta_tmp, DELTA_CORR ) )
1988 : {
1989 5384 : delta_corr_dn = delta_tmp;
1990 5384 : move16();
1991 : }
1992 : }
1993 :
1994 6815 : IF( LT_16( m, lastPeak ) )
1995 : {
1996 6611 : delta_tmp = shr( sub( sub( pkLocation1, pkLocation ), 1 ), 1 );
1997 6611 : if ( LT_16( delta_tmp, DELTA_CORR ) )
1998 : {
1999 5384 : delta_corr_up = delta_tmp;
2000 5384 : move16();
2001 : }
2002 : }
2003 :
2004 : /* Input Xph */
2005 6815 : segmentLen = sub( sub( pkLocation, delta_corr_dn ), i );
2006 : /* i = add(i, segmentLen); */
2007 23942 : FOR( j = 0; j < segmentLen; j++ )
2008 : {
2009 17127 : *seed = rand_phase_fx( *seed, &sin_F, &cos_F );
2010 :
2011 17127 : re = *pReX;
2012 17127 : move16();
2013 17127 : im = *pImX;
2014 17127 : move16();
2015 17127 : IF( element_mode == EVS_MONO )
2016 : {
2017 0 : tmp = sub( mult_r( re, cos_F ), mult_r( im, sin_F ) );
2018 0 : im = add( mult_r( re, sin_F ), mult_r( im, cos_F ) );
2019 : }
2020 : ELSE
2021 : {
2022 17127 : tmp = mult_r( one_peak_flag_mask, sub( mult_r( re, cos_F ), mult_r( im, sin_F ) ) );
2023 17127 : im = mult_r( one_peak_flag_mask, add( mult_r( re, sin_F ), mult_r( im, cos_F ) ) );
2024 : }
2025 17127 : IF( LT_16( alpha[k], 32766 ) )
2026 : {
2027 4560 : *seed = rand_phase_fx( *seed, &sin_F, &cos_F );
2028 4560 : move16();
2029 4560 : tmp2 = mult_r( beta[k], Xavg[k] );
2030 4560 : *pReX++ = add( mult_r( alpha[k], tmp ), mult_r( tmp2, cos_F ) );
2031 4560 : move16();
2032 4560 : *pImX-- = add( mult_r( alpha[k], im ), mult_r( tmp2, sin_F ) );
2033 4560 : move16();
2034 : }
2035 : ELSE
2036 : {
2037 12567 : *pReX++ = mult_r( mag_chg[k], tmp );
2038 12567 : move16();
2039 12567 : *pImX-- = mult_r( mag_chg[k], im );
2040 12567 : move16();
2041 : }
2042 17127 : i = add( i, 1 );
2043 17127 : if ( GE_16( i, ivas_gwlpr[k + 1] ) )
2044 : {
2045 225 : k = add( k, 1 );
2046 : }
2047 : }
2048 :
2049 6815 : e = add( pkLocation, delta_corr_up );
2050 6815 : if ( GT_16( e, lprotBy2Minus1 ) )
2051 : {
2052 2 : e = lprotBy2Minus1;
2053 2 : move16();
2054 : }
2055 :
2056 6815 : Xph = *pCorrPhase;
2057 6815 : move32();
2058 6815 : Xph_short = s_and( extract_l( L_shr( Xph, 16 - 10 ) ), 0x3ff ); /* 10 bits precision after radix point */
2059 6815 : IF( GE_16( Xph_short, 512 ) )
2060 : {
2061 3431 : sin_F = negate( sincos_t_ext_fx[Xph_short - 512] );
2062 3431 : IF( LT_16( Xph_short, 768 ) )
2063 : {
2064 1717 : cos_F = negate( sincos_t_ext_fx[Xph_short - ( 512 - 256 )] );
2065 : }
2066 : ELSE
2067 : {
2068 1714 : cos_F = sincos_t_ext_fx[-Xph_short + ( 1024 + 256 )];
2069 1714 : move16();
2070 : }
2071 : }
2072 : ELSE
2073 : {
2074 3384 : sin_F = sincos_t_ext_fx[Xph_short];
2075 3384 : move16();
2076 3384 : IF( LT_16( Xph_short, 256 ) )
2077 : {
2078 1774 : cos_F = sincos_t_ext_fx[Xph_short + 256];
2079 1774 : move16();
2080 : }
2081 : ELSE
2082 : {
2083 1610 : cos_F = negate( sincos_t_ext_fx[-Xph_short + ( 256 + 512 )] );
2084 : }
2085 : }
2086 :
2087 6815 : segmentLen = add( sub( e, i ), 1 );
2088 : /* i = add(i, segmentLen); */
2089 52731 : FOR( j = 0; j < segmentLen; j++ )
2090 : {
2091 45916 : mag_chg_local = mag_chg[k];
2092 45916 : move16();
2093 45916 : IF( ph_dith != 0 )
2094 : {
2095 26424 : Xph = *pCorrPhase; /* in Q16. 2*PI is not included. */
2096 26424 : move32();
2097 26424 : Random( seed ); /* in Q0 */
2098 26424 : acc = L_mult( *seed, ph_dith ); /* N.B. ph_dith[i] is in Q15, i.e., in between 0 and 1.0 (2*PI not included) */
2099 26424 : acc = L_shr( acc, PHASE_DITH_SCALE_SHIFT );
2100 26424 : Xph = L_add( Xph, acc ); /* in Q16. */
2101 :
2102 26424 : IF( ph_dith > 0 ) /* up to 6 dB additional att of peaks in non_transient longer bursts, (when peak phase is randomized ) */
2103 : {
2104 : /* mag_chg_local *= 0.5 + (1.0 - ph_dith[i])/2 where 0.5~= sqrt((float)pow(10.0,-6/10.0)) and ph_dith=0..1.0--> scale=1.0 ...5 */
2105 26424 : mag_chg_local = mult_r( mag_chg_local, sub( 32767, shr( ph_dith, 1 ) ) );
2106 : }
2107 26424 : Xph_short = s_and( extract_l( L_shr( Xph, 16 - 10 ) ), 0x3ff );
2108 26424 : IF( GE_16( Xph_short, 512 ) )
2109 : {
2110 13147 : sin_F = negate( sincos_t_ext_fx[Xph_short - 512] );
2111 13147 : IF( LT_16( Xph_short, 768 ) )
2112 : {
2113 6561 : cos_F = negate( sincos_t_ext_fx[Xph_short - ( 512 - 256 )] );
2114 : }
2115 : ELSE
2116 : {
2117 6586 : cos_F = sincos_t_ext_fx[-Xph_short + ( 1024 + 256 )];
2118 6586 : move16();
2119 : }
2120 : }
2121 : ELSE
2122 : {
2123 13277 : sin_F = sincos_t_ext_fx[Xph_short];
2124 13277 : move16();
2125 13277 : IF( LT_16( Xph_short, 256 ) )
2126 : {
2127 6647 : cos_F = sincos_t_ext_fx[Xph_short + 256];
2128 6647 : move16();
2129 : }
2130 : ELSE
2131 : {
2132 6630 : cos_F = negate( sincos_t_ext_fx[-Xph_short + ( 256 + 512 )] );
2133 : }
2134 : }
2135 : }
2136 :
2137 45916 : re = *pReX;
2138 45916 : move16();
2139 45916 : im = *pImX;
2140 45916 : move16();
2141 45916 : tmp = sub_sat( mult_r( re, cos_F ), mult_r( im, sin_F ) );
2142 : #ifdef FIX_2170_ASSERT_IN_FFT3
2143 45916 : im = add_sat( mult_r( re, sin_F ), mult_r( im, cos_F ) );
2144 : #else
2145 : im = add( mult_r( re, sin_F ), mult_r( im, cos_F ) );
2146 : #endif
2147 45916 : IF( LT_16( alpha[k], 32766 ) )
2148 : {
2149 27185 : alpha_local = mag_chg_local;
2150 27185 : move16();
2151 :
2152 27185 : acc = L_sub( 1073741824L, L_mult0( alpha_local, alpha_local ) );
2153 27185 : acc = Sqrt_l( acc, &expo );
2154 27185 : expo = add( 30, add( 31, expo ) );
2155 27185 : if ( EQ_16( s_and( expo, 1 ), 1 ) )
2156 : {
2157 27185 : acc = Mult_32_16( acc, 23170 ); /* 1/sqrt(2) in Q15 */
2158 : }
2159 27185 : expo = shr( expo, 1 );
2160 27185 : beta_local = mult_r( beta_mute, round_fx( L_shl( acc, sub( 31, expo ) ) ) );
2161 :
2162 27185 : IF( GE_16( k, LGW32K - 1 ) )
2163 : {
2164 10915 : beta_local = mult_r( beta_local, 3277 ); /* 0.1 in Q15 */
2165 : }
2166 16270 : ELSE IF( GE_16( k, LGW16K - 1 ) )
2167 : {
2168 8177 : beta_local = mult_r( beta_local, 16384 ); /* 0.5 in Q15 */
2169 : }
2170 :
2171 27185 : *seed = rand_phase_fx( *seed, &sin_F, &cos_F );
2172 27185 : move16();
2173 27185 : tmp2 = mult_r( beta_local, Xavg[k] );
2174 27185 : *pReX++ = add( mult_r( alpha_local, tmp ), mult_r( tmp2, cos_F ) );
2175 27185 : move16();
2176 27185 : *pImX-- = add( mult_r( alpha_local, im ), mult_r( tmp2, sin_F ) );
2177 27185 : move16();
2178 : }
2179 : ELSE
2180 : {
2181 18731 : *pReX++ = mult_r( mag_chg_local, tmp );
2182 18731 : move16();
2183 18731 : *pImX-- = mult_r( mag_chg_local, im );
2184 18731 : move16();
2185 : }
2186 :
2187 45916 : i = add( i, 1 );
2188 45916 : if ( GE_16( i, ivas_gwlpr[k + 1] ) )
2189 : {
2190 833 : k = add( k, 1 );
2191 : }
2192 : }
2193 6815 : pCorrPhase++;
2194 : }
2195 :
2196 220 : segmentLen = sub( shr( Lprot, 1 ), i );
2197 86461 : FOR( j = 0; j < segmentLen; j++ )
2198 : {
2199 86241 : *seed = rand_phase_fx( *seed, &sin_F, &cos_F );
2200 86241 : move16();
2201 :
2202 86241 : re = *pReX;
2203 86241 : move16();
2204 86241 : im = *pImX;
2205 86241 : move16();
2206 :
2207 :
2208 86241 : IF( element_mode == EVS_MONO )
2209 : {
2210 0 : tmp = sub( mult_r( re, cos_F ), mult_r( im, sin_F ) );
2211 0 : im = add( mult_r( re, sin_F ), mult_r( im, cos_F ) );
2212 : }
2213 : ELSE
2214 : {
2215 86241 : tmp = mult_r( one_peak_flag_mask, sub( mult_r( re, cos_F ), mult_r( im, sin_F ) ) );
2216 86241 : im = mult_r( one_peak_flag_mask, add( mult_r( re, sin_F ), mult_r( im, cos_F ) ) );
2217 : }
2218 86241 : IF( LT_16( alpha[k], 32766 ) )
2219 : {
2220 25049 : *seed = rand_phase_fx( *seed, &sin_F, &cos_F );
2221 25049 : move16();
2222 25049 : tmp2 = mult_r( beta[k], Xavg[k] );
2223 25049 : *pReX++ = add( mult_r( alpha[k], tmp ), mult_r( tmp2, cos_F ) );
2224 25049 : move16();
2225 25049 : *pImX-- = add( mult_r( alpha[k], im ), mult_r( tmp2, sin_F ) );
2226 25049 : move16();
2227 : }
2228 : ELSE
2229 : {
2230 61192 : *pReX++ = mult_r( mag_chg[k], tmp );
2231 61192 : move16();
2232 61192 : *pImX-- = mult_r( mag_chg[k], im );
2233 61192 : move16();
2234 : }
2235 :
2236 86241 : i = add( i, 1 );
2237 86241 : if ( GE_16( i, ivas_gwlpr[k + 1] ) )
2238 : {
2239 626 : k = add( k, 1 );
2240 : }
2241 : }
2242 220 : }
2243 :
2244 0 : static void subst_spec_fx(
2245 : const Word16 *plocs, /* i : The indices of the identified peaks Q0 */
2246 : const Word32 *plocsi, /* i : Interpolated positions of the identified peaks Q16 */
2247 : Word16 *num_plocs, /* i/o : Number of identified peaks Q0 */
2248 : const Word16 time_offs, /* i : Time offset Q0 */
2249 : Word16 *X, /* i/o : FFT spectrum */
2250 : const Word16 *mag_chg, /* i : Magnitude modification Q15 */
2251 : const Word16 ph_dith, /* i : Phase dither, 2*PI is not included. (Q15, i.e., between 0.0 and 1.0) */
2252 : const Word16 *is_trans, /* i : Transient flags (either 0 or 1) */
2253 : const Word16 output_frame, /* i : Frame length Q0 */
2254 : Word16 *seed, /* i/o : Random seed */
2255 : const Word16 *alpha, /* i : Magnitude modification factors for fade to average Q15 */
2256 : const Word16 *beta, /* i : Magnitude modification factors for fade to average Q15 */
2257 : Word16 beta_mute, /* i : Factor for long-term mute Q15 */
2258 : const Word16 *Xavg /* i : Frequency group averages to fade to Q0 */
2259 : )
2260 : {
2261 : Word16 Xph_short;
2262 : Word32 corr_phase[MAX_PLOCS], Xph;
2263 : Word32 *pCorrPhase;
2264 : Word16 cos_F, sin_F, tmp;
2265 : Word16 Lprot, m, i, e, im_ind, delta_corr_up, delta_corr_dn, delta_tmp;
2266 : UWord16 lsb;
2267 : Word16 j, re, im, *pReX, *pImX, lastPeak, lprotBy2Minus1, segmentLen;
2268 : Word16 pkLocation_1, pkLocation, pkLocation1;
2269 : const Word16 *pPlocs;
2270 : const Word32 *pPlocsi;
2271 : Word32 acc;
2272 : Word16 Lecu;
2273 : Word16 Lprot_inv;
2274 : Word16 k;
2275 : Word16 tmp2;
2276 : Word16 alpha_local;
2277 : Word16 beta_local;
2278 : Word16 expo;
2279 : Word16 mag_chg_local; /*for peak attenuation in burst */
2280 :
2281 0 : Lprot = 512;
2282 0 : move16();
2283 0 : Lprot_inv = 8192;
2284 0 : move16();
2285 0 : Lecu = shl( output_frame, 1 );
2286 :
2287 0 : IF( EQ_16( output_frame, L_FRAME48k ) )
2288 : {
2289 0 : Lprot = L_PROT48k; /* 1536=(2*output_frame)*1024/1280; */
2290 0 : move16();
2291 0 : Lprot_inv = 2731; /* Q22 */
2292 0 : move16();
2293 : }
2294 0 : ELSE IF( EQ_16( output_frame, L_FRAME32k ) )
2295 : {
2296 0 : Lprot = L_PROT32k; /* 1024 */
2297 0 : move16();
2298 0 : Lprot_inv = 4096; /* Q22 */
2299 0 : move16();
2300 : }
2301 : ELSE
2302 : {
2303 0 : Lprot = 512;
2304 0 : move16();
2305 0 : Lprot_inv = 8192; /* Q22 */
2306 0 : move16();
2307 : }
2308 :
2309 : /* Correction phase of the identified peaks */
2310 0 : IF( s_or( is_trans[0], is_trans[1] ) != 0 )
2311 : {
2312 0 : *num_plocs = 0;
2313 0 : move16();
2314 : }
2315 : ELSE
2316 : {
2317 0 : tmp = NS2SA_FX2( L_mult0( output_frame, 50 ), PH_ECU_ALDO_OLP2_NS - PH_ECU_LOOKAHEAD_NS );
2318 0 : move16();
2319 0 : tmp = add( tmp, sub( Lecu, shr( sub( Lecu, Lprot ), 1 ) ) );
2320 0 : tmp = sub( tmp, shr( output_frame, 1 ) );
2321 0 : tmp = add_sat( tmp, time_offs );
2322 0 : tmp = round_fx( L_shl( L_mult0( tmp, Lprot_inv ), 4 ) ); /* 0+22+4-16=10 */
2323 :
2324 0 : pPlocsi = plocsi;
2325 0 : pCorrPhase = corr_phase;
2326 0 : FOR( m = 0; m < *num_plocs; m++ )
2327 : {
2328 0 : Mpy_32_16_ss( *pPlocsi++, tmp, &acc, &lsb ); /* plocsi[] in Q16, tmp in Q10 and tmp does not include 2*PI. */
2329 0 : acc = L_add( L_shl( acc, 5 ), lshr( lsb, 11 ) );
2330 0 : *pCorrPhase++ = acc; /* in Q16. 2*PI is not included. */
2331 0 : move32();
2332 : }
2333 : }
2334 0 : lprotBy2Minus1 = sub( shr( Lprot, 1 ), 1 );
2335 0 : i = 1;
2336 0 : move16();
2337 0 : k = 0;
2338 0 : move16();
2339 0 : im_ind = sub( Lprot, 1 );
2340 0 : move16();
2341 0 : pReX = X + i;
2342 0 : pImX = X + im_ind;
2343 0 : pPlocs = plocs;
2344 0 : pCorrPhase = corr_phase;
2345 0 : pkLocation = *pPlocs; /* N.B. No post-increment */
2346 0 : move16();
2347 0 : pkLocation1 = *pPlocs++;
2348 0 : move16();
2349 0 : lastPeak = sub( *num_plocs, 1 );
2350 0 : FOR( m = 0; m < *num_plocs; m++ )
2351 : {
2352 0 : delta_corr_dn = DELTA_CORR;
2353 0 : move16();
2354 0 : delta_corr_up = DELTA_CORR;
2355 0 : move16();
2356 :
2357 0 : pkLocation_1 = pkLocation; /* plocs[m - 1] */
2358 0 : move16();
2359 0 : pkLocation = pkLocation1; /* plocs[m] */
2360 0 : move16();
2361 0 : pkLocation1 = *pPlocs++; /* plocs[m + 1] */
2362 0 : move16();
2363 0 : IF( m > 0 )
2364 : {
2365 0 : delta_tmp = shr( sub( sub( pkLocation, pkLocation_1 ), 1 ), 1 );
2366 0 : if ( LT_16( delta_tmp, DELTA_CORR ) )
2367 : {
2368 0 : delta_corr_dn = delta_tmp;
2369 0 : move16();
2370 : }
2371 : }
2372 :
2373 0 : IF( LT_16( m, lastPeak ) )
2374 : {
2375 0 : delta_tmp = shr( sub( sub( pkLocation1, pkLocation ), 1 ), 1 );
2376 0 : if ( LT_16( delta_tmp, DELTA_CORR ) )
2377 : {
2378 0 : delta_corr_up = delta_tmp;
2379 0 : move16();
2380 : }
2381 : }
2382 :
2383 : /* Input Xph */
2384 0 : segmentLen = sub( sub( pkLocation, delta_corr_dn ), i );
2385 : /* i = add(i, segmentLen); */
2386 0 : FOR( j = 0; j < segmentLen; j++ )
2387 : {
2388 0 : *seed = rand_phase_fx( *seed, &sin_F, &cos_F );
2389 :
2390 0 : re = *pReX;
2391 0 : move16();
2392 0 : im = *pImX;
2393 0 : move16();
2394 : {
2395 0 : tmp = sub( mult_r( re, cos_F ), mult_r( im, sin_F ) );
2396 0 : im = add( mult_r( re, sin_F ), mult_r( im, cos_F ) );
2397 : }
2398 0 : IF( LT_16( alpha[k], 32766 ) )
2399 : {
2400 0 : *seed = rand_phase_fx( *seed, &sin_F, &cos_F );
2401 0 : move16();
2402 0 : tmp2 = mult_r( beta[k], Xavg[k] );
2403 0 : *pReX++ = add( mult_r( alpha[k], tmp ), mult_r( tmp2, cos_F ) );
2404 0 : move16();
2405 0 : *pImX-- = add( mult_r( alpha[k], im ), mult_r( tmp2, sin_F ) );
2406 0 : move16();
2407 : }
2408 : ELSE
2409 : {
2410 0 : *pReX++ = mult_r( mag_chg[k], tmp );
2411 0 : move16();
2412 0 : *pImX-- = mult_r( mag_chg[k], im );
2413 0 : move16();
2414 : }
2415 0 : i = add( i, 1 );
2416 0 : if ( GE_16( i, ivas_gwlpr[k + 1] ) )
2417 : {
2418 0 : k = add( k, 1 );
2419 : }
2420 : }
2421 :
2422 0 : e = add( pkLocation, delta_corr_up );
2423 0 : if ( GT_16( e, lprotBy2Minus1 ) )
2424 : {
2425 0 : e = lprotBy2Minus1;
2426 0 : move16();
2427 : }
2428 :
2429 0 : Xph = *pCorrPhase;
2430 0 : move32();
2431 0 : Xph_short = s_and( extract_l( L_shr( Xph, 16 - 10 ) ), 0x3ff ); /* 10 bits precision after radix point */
2432 0 : IF( GE_16( Xph_short, 512 ) )
2433 : {
2434 0 : sin_F = negate( sincos_t_ext_fx[Xph_short - 512] );
2435 0 : IF( LT_16( Xph_short, 768 ) )
2436 : {
2437 0 : cos_F = negate( sincos_t_ext_fx[Xph_short - ( 512 - 256 )] );
2438 : }
2439 : ELSE
2440 : {
2441 0 : cos_F = sincos_t_ext_fx[-Xph_short + ( 1024 + 256 )];
2442 0 : move16();
2443 : }
2444 : }
2445 : ELSE
2446 : {
2447 0 : sin_F = sincos_t_ext_fx[Xph_short];
2448 0 : move16();
2449 0 : IF( LT_16( Xph_short, 256 ) )
2450 : {
2451 0 : cos_F = sincos_t_ext_fx[Xph_short + 256];
2452 0 : move16();
2453 : }
2454 : ELSE
2455 : {
2456 0 : cos_F = negate( sincos_t_ext_fx[-Xph_short + ( 256 + 512 )] );
2457 : }
2458 : }
2459 :
2460 0 : segmentLen = add( sub( e, i ), 1 );
2461 : /* i = add(i, segmentLen); */
2462 0 : FOR( j = 0; j < segmentLen; j++ )
2463 : {
2464 0 : mag_chg_local = mag_chg[k];
2465 0 : move16();
2466 0 : IF( ph_dith != 0 )
2467 : {
2468 0 : Xph = *pCorrPhase; /* in Q16. 2*PI is not included. */
2469 0 : move32();
2470 0 : Random( seed ); /* in Q0 */
2471 0 : acc = L_mult( *seed, ph_dith ); /* N.B. ph_dith[i] is in Q15, i.e., in between 0 and 1.0 (2*PI not included) */
2472 0 : acc = L_shr( acc, PHASE_DITH_SCALE_SHIFT );
2473 0 : Xph = L_add( Xph, acc ); /* in Q16. */
2474 :
2475 0 : IF( ph_dith > 0 ) /* up to 6 dB additional att of peaks in non_transient longer bursts, (when peak phase is randomized ) */
2476 : {
2477 : /* mag_chg_local *= 0.5 + (1.0 - ph_dith[i])/2 where 0.5~= sqrt((float)pow(10.0,-6/10.0)) and ph_dith=0..1.0--> scale=1.0 ...5 */
2478 0 : mag_chg_local = mult_r( mag_chg_local, sub( 32767, shr( ph_dith, 1 ) ) );
2479 : }
2480 0 : Xph_short = s_and( extract_l( L_shr( Xph, 16 - 10 ) ), 0x3ff );
2481 0 : IF( GE_16( Xph_short, 512 ) )
2482 : {
2483 0 : sin_F = negate( sincos_t_ext_fx[Xph_short - 512] );
2484 0 : IF( LT_16( Xph_short, 768 ) )
2485 : {
2486 0 : cos_F = negate( sincos_t_ext_fx[Xph_short - ( 512 - 256 )] );
2487 : }
2488 : ELSE
2489 : {
2490 0 : cos_F = sincos_t_ext_fx[-Xph_short + ( 1024 + 256 )];
2491 0 : move16();
2492 : }
2493 : }
2494 : ELSE
2495 : {
2496 0 : sin_F = sincos_t_ext_fx[Xph_short];
2497 0 : move16();
2498 0 : IF( LT_16( Xph_short, 256 ) )
2499 : {
2500 0 : cos_F = sincos_t_ext_fx[Xph_short + 256];
2501 0 : move16();
2502 : }
2503 : ELSE
2504 : {
2505 0 : cos_F = negate( sincos_t_ext_fx[-Xph_short + ( 256 + 512 )] );
2506 : }
2507 : }
2508 : }
2509 :
2510 0 : re = *pReX;
2511 0 : move16();
2512 0 : im = *pImX;
2513 0 : move16();
2514 : {
2515 0 : tmp = sub_sat( mult_r( re, cos_F ), mult_r( im, sin_F ) );
2516 0 : im = add_sat( mult_r( re, sin_F ), mult_r( im, cos_F ) );
2517 : }
2518 0 : IF( LT_16( alpha[k], 32766 ) )
2519 : {
2520 0 : alpha_local = mag_chg_local;
2521 0 : move16();
2522 :
2523 0 : acc = L_sub( 1073741824L, L_mult0( alpha_local, alpha_local ) );
2524 0 : acc = Sqrt_l( acc, &expo );
2525 0 : expo = add( 30, add( 31, expo ) );
2526 0 : if ( EQ_16( s_and( expo, 1 ), 1 ) )
2527 : {
2528 0 : acc = Mult_32_16( acc, 23170 ); /* 1/sqrt(2) in Q15 */
2529 : }
2530 0 : expo = shr( expo, 1 );
2531 0 : beta_local = mult_r( beta_mute, round_fx( L_shl( acc, sub( 31, expo ) ) ) );
2532 :
2533 0 : IF( GE_16( k, LGW32K - 1 ) )
2534 : {
2535 0 : beta_local = mult_r( beta_local, 3277 ); /* 0.1 in Q15 */
2536 : }
2537 0 : ELSE IF( GE_16( k, LGW16K - 1 ) )
2538 : {
2539 0 : beta_local = mult_r( beta_local, 16384 ); /* 0.5 in Q15 */
2540 : }
2541 :
2542 0 : *seed = rand_phase_fx( *seed, &sin_F, &cos_F );
2543 0 : move16();
2544 0 : tmp2 = mult_r( beta_local, Xavg[k] );
2545 0 : *pReX++ = add( mult_r( alpha_local, tmp ), mult_r( tmp2, cos_F ) );
2546 0 : move16();
2547 0 : *pImX-- = add( mult_r( alpha_local, im ), mult_r( tmp2, sin_F ) );
2548 0 : move16();
2549 : }
2550 : ELSE
2551 : {
2552 0 : *pReX++ = mult_r( mag_chg_local, tmp );
2553 0 : move16();
2554 0 : *pImX-- = mult_r( mag_chg_local, im );
2555 0 : move16();
2556 : }
2557 :
2558 0 : i = add( i, 1 );
2559 0 : if ( GE_16( i, ivas_gwlpr[k + 1] ) )
2560 : {
2561 0 : k = add( k, 1 );
2562 : }
2563 : }
2564 0 : pCorrPhase++;
2565 : }
2566 :
2567 0 : segmentLen = sub( shr( Lprot, 1 ), i );
2568 0 : FOR( j = 0; j < segmentLen; j++ )
2569 : {
2570 0 : *seed = rand_phase_fx( *seed, &sin_F, &cos_F );
2571 0 : move16();
2572 :
2573 0 : re = *pReX;
2574 0 : move16();
2575 0 : im = *pImX;
2576 0 : move16();
2577 0 : tmp = sub( mult_r( re, cos_F ), mult_r( im, sin_F ) );
2578 0 : im = add( mult_r( re, sin_F ), mult_r( im, cos_F ) );
2579 0 : IF( LT_16( alpha[k], 32766 ) )
2580 : {
2581 0 : *seed = rand_phase_fx( *seed, &sin_F, &cos_F );
2582 0 : move16();
2583 0 : tmp2 = mult_r( beta[k], Xavg[k] );
2584 0 : *pReX++ = add( mult_r( alpha[k], tmp ), mult_r( tmp2, cos_F ) );
2585 0 : move16();
2586 0 : *pImX-- = add( mult_r( alpha[k], im ), mult_r( tmp2, sin_F ) );
2587 0 : move16();
2588 : }
2589 : ELSE
2590 : {
2591 0 : *pReX++ = mult_r( mag_chg[k], tmp );
2592 0 : move16();
2593 0 : *pImX-- = mult_r( mag_chg[k], im );
2594 0 : move16();
2595 : }
2596 :
2597 0 : i = add( i, 1 );
2598 0 : if ( GE_16( i, ivas_gwlpr[k + 1] ) )
2599 : {
2600 0 : k = add( k, 1 );
2601 : }
2602 : }
2603 0 : }
2604 :
2605 : /*--------------------------------------------------------------------------
2606 : * rec_wtda()
2607 : *
2608 : * Windowing and TDA of reconstructed frame
2609 : *--------------------------------------------------------------------------*/
2610 :
2611 220 : static void ivas_rec_wtda_fx(
2612 : Word16 *X, /* i : FFT spectrum */
2613 : Word32 *ecu_rec, /* o : Reconstructed frame in tda domain */
2614 : const Word16 output_frame, /* i : Frame length */
2615 : const Word16 Lprot, /* i : Prototype frame length */
2616 : const Word16 old_dec[270], /* i : end of last decoded for OLA before tda and itda */
2617 : const Word16 element_mode, /* i : IVAS element mode */
2618 : const Word16 *num_p, /* i : Number of peaks Q0 */
2619 : const Word16 *plocs /* i : Peak locations Q0 */
2620 : )
2621 : {
2622 : Word16 timesh;
2623 : Word16 Qin;
2624 : Word16 xf_len;
2625 : Word16 i, idx;
2626 : Word16 *p_ecu;
2627 : Word16 g;
2628 : Word16 tbl_delta;
2629 : Word16 xsubst_[2 * L_FRAME48k];
2630 : const Word16 *w_hamm;
2631 : Word16 *pX_start, *pX_end;
2632 : Word16 tmp, tmp_e;
2633 : Word16 hamm_len2;
2634 : Word16 *pNew;
2635 : const Word16 *pOldW, *pNewW;
2636 : Word16 xfwin[NS2SA( L_FRAME48k * FRAMES_PER_SEC, N_ZERO_MDCT_NS - ( 2 * FRAME_SIZE_NS - L_PROT_NS ) / 2 )];
2637 : const Word16 *pOld;
2638 : Word16 copy_len;
2639 : Word16 ola_len;
2640 :
2641 220 : copy_len = NS2SA_FX2( L_mult0( output_frame, FRAMES_PER_SEC ), ( 2 * FRAME_SIZE_NS - L_PROT_NS ) / 2 ); /* prototype fill on each side of xsubst to fill MDCT Frame */
2642 220 : move16();
2643 220 : ola_len = NS2SA_FX2( L_mult0( output_frame, FRAMES_PER_SEC ), N_ZERO_MDCT_NS - ( 2 * FRAME_SIZE_NS - L_PROT_NS ) / 2 ); /* remaining lengt of LA_ZEROS to overlap add decoded with xsubst */
2644 220 : move16();
2645 :
2646 220 : xf_len = 26;
2647 220 : move16();
2648 220 : tbl_delta = 10082; /* Q12 */
2649 220 : move16();
2650 220 : IF( EQ_16( output_frame, L_FRAME48k ) )
2651 : {
2652 155 : w_hamm = w_hamm_sana48k_2_fx;
2653 155 : hamm_len2 = L_PROT_HAMM_LEN2_48k;
2654 155 : move16();
2655 155 : xf_len = 78;
2656 155 : move16();
2657 155 : tbl_delta = 3361; /* Q12 */
2658 155 : move16();
2659 : }
2660 65 : ELSE IF( EQ_16( output_frame, L_FRAME32k ) )
2661 : {
2662 54 : w_hamm = w_hamm_sana32k_2_fx;
2663 54 : hamm_len2 = L_PROT_HAMM_LEN2_32k;
2664 54 : move16();
2665 54 : xf_len = 52;
2666 54 : move16();
2667 54 : tbl_delta = 5041; /* Q12 */
2668 54 : move16();
2669 : }
2670 : ELSE
2671 : {
2672 11 : w_hamm = w_hamm_sana16k_2_fx;
2673 11 : hamm_len2 = L_PROT_HAMM_LEN2_16k;
2674 11 : move16();
2675 : }
2676 :
2677 220 : test();
2678 220 : test();
2679 220 : IF( element_mode != EVS_MONO && *num_p > 0 && GT_16( plocs[0], 3 ) )
2680 : {
2681 : /* Perform inverse windowing of hammrect */
2682 85 : pX_start = X;
2683 85 : pX_end = X + sub( Lprot, 1 );
2684 22069 : FOR( i = 0; i < hamm_len2; i++ )
2685 : {
2686 21984 : tmp_e = 0;
2687 21984 : tmp = BASOP_Util_Divide1616_Scale( ONE_IN_Q14, *w_hamm, &tmp_e );
2688 21984 : tmp = shl( tmp, 1 );
2689 21984 : tmp = shr( tmp, sub( 4, tmp_e ) ); // Q11
2690 21984 : *pX_start = shl_sat( mult_r( *pX_start, tmp ), 4 ); // Qin
2691 21984 : move16();
2692 21984 : *pX_end = shl_sat( mult_r( *pX_end, tmp ), 4 ); // Qin
2693 21984 : move16();
2694 21984 : pX_start++;
2695 21984 : pX_end--;
2696 21984 : w_hamm++;
2697 : }
2698 : }
2699 :
2700 : /* extract reconstructed frame with aldo window */
2701 220 : timesh = sub( NS2SA_FX2( L_mult0( output_frame, FRAMES_PER_SEC ), N_ZERO_MDCT_NS ), shr( sub( shl( output_frame, 1 ), Lprot ), 1 ) );
2702 :
2703 220 : set16_fx( xsubst_, 0, add( sub( shl( output_frame, 1 ), Lprot ), timesh ) );
2704 220 : Copy( X, xsubst_ + add( sub( shl( output_frame, 1 ), Lprot ), timesh ), sub( Lprot, timesh ) );
2705 :
2706 : /* Copy and OLA look ahead zero part of MDCT window from decoded signal */
2707 220 : IF( element_mode != EVS_MONO )
2708 : {
2709 220 : Copy( old_dec, xsubst_ + NS2SA_FX2( L_mult0( output_frame, FRAMES_PER_SEC ), N_ZERO_MDCT_NS ), copy_len ); /* also need to scale to Q0 ?? */
2710 220 : pOld = old_dec + copy_len;
2711 220 : pNew = xsubst_ + add( copy_len, NS2SA_FX2( L_mult0( output_frame, FRAMES_PER_SEC ), N_ZERO_MDCT_NS ) );
2712 220 : tmp = div_s( 1, shl( ola_len, 1 ) ); // Q15
2713 220 : tmp = round_fx( L_shl( L_mult( tmp, EVS_PI_FX ), 2 ) ); // Q15
2714 220 : sinq_fx( tmp, 0, ola_len, xfwin );
2715 220 : v_mult16_fx( xfwin, xfwin, xfwin, ola_len ); /* xfwin = sin^2 of 0..pi/4 */
2716 220 : pOldW = xfwin + sub( ola_len, 1 );
2717 220 : pNewW = xfwin;
2718 15404 : FOR( i = 0; i < ola_len; i++ )
2719 : {
2720 15184 : *pNew = add( mult_r( *pOld, *pOldW ), mult_r( *pNew, *pNewW ) );
2721 15184 : move16();
2722 15184 : pOld += 1;
2723 15184 : pNew += 1;
2724 15184 : pOldW -= 1;
2725 15184 : pNewW += 1;
2726 : }
2727 : }
2728 : ELSE
2729 : {
2730 : /* Smoothen onset of ECU frame */
2731 0 : p_ecu = xsubst_ + add( sub( shl( output_frame, 1 ), Lprot ), timesh );
2732 0 : FOR( i = 0; i < xf_len; ( i++, p_ecu++ ) )
2733 : {
2734 0 : idx = extract_l( L_shr( L_mult0( i, tbl_delta ), 12 ) ); // Q0
2735 0 : g = sincos_t_fx[idx]; // Q15
2736 0 : move16();
2737 0 : g = mult( g, g ); // Q15
2738 0 : *p_ecu = mult( g, ( *p_ecu ) );
2739 0 : move16();
2740 0 : p_ecu++;
2741 : }
2742 : }
2743 :
2744 : /* Apply TDA and windowing to ECU frame */
2745 220 : Qin = 0;
2746 220 : move16();
2747 220 : wtda_fx( xsubst_ + output_frame, &Qin, ecu_rec, NULL, 0, ALDO_WINDOW, ALDO_WINDOW, /* window overlap of current frame (0: full, 2: none, or 3: half) */
2748 : output_frame );
2749 :
2750 220 : return;
2751 : }
2752 :
2753 0 : static void rec_wtda_fx(
2754 : Word16 *X, /* i : FFT spectrum */
2755 : Word32 *ecu_rec, /* o : Reconstructed frame in tda domain */
2756 : const Word16 output_frame, /* i : Frame length */
2757 : const Word16 Lprot, /* i : Prototype frame length */
2758 : const Word32 fs )
2759 : {
2760 : Word16 l, Lprot2, timesh;
2761 : Word16 rec_buf[3 * L_FRAME48k];
2762 : Word16 *xsubst_, *out_ptr;
2763 : Word16 Qin;
2764 : Word16 xf_len;
2765 : Word16 i, idx;
2766 : Word16 *p_ecu;
2767 : Word16 g;
2768 : Word16 tbl_delta;
2769 :
2770 0 : xsubst_ = rec_buf + output_frame;
2771 0 : Lprot2 = shr( Lprot, 1 );
2772 :
2773 : /* Initialize to WB constants */
2774 0 : xf_len = 26;
2775 0 : move16();
2776 0 : tbl_delta = 10082; /* Q12 */
2777 0 : move16();
2778 0 : IF( EQ_16( output_frame, L_FRAME48k ) )
2779 : {
2780 0 : xf_len = 78;
2781 0 : move16();
2782 0 : tbl_delta = 3361; /* Q12 */
2783 0 : move16();
2784 : }
2785 0 : ELSE IF( EQ_16( output_frame, L_FRAME32k ) )
2786 : {
2787 0 : xf_len = 52;
2788 0 : move16();
2789 0 : tbl_delta = 5041; /* Q12 */
2790 0 : move16();
2791 : }
2792 :
2793 : /* extract reconstructed frame with aldo window */
2794 0 : l = sub( output_frame, Lprot2 );
2795 0 : set16_fx( xsubst_, 0, l );
2796 0 : Copy( X, xsubst_ + l, Lprot );
2797 0 : set16_fx( xsubst_ + add( output_frame, Lprot2 ), 0, l );
2798 :
2799 : /* Smoothen onset of ECU frame */
2800 0 : p_ecu = xsubst_ + sub( output_frame, Lprot2 );
2801 0 : FOR( i = 0; i < xf_len; i++ )
2802 : {
2803 0 : idx = extract_l( L_shr( L_mult0( i, tbl_delta ), 12 ) );
2804 0 : g = sincos_t_fx[idx];
2805 0 : move16();
2806 0 : g = mult( g, g );
2807 0 : *p_ecu = mult( g, ( *p_ecu ) );
2808 0 : move16();
2809 0 : p_ecu++;
2810 : }
2811 :
2812 0 : timesh = NS2SA_FX2( fs, 10000000L - PH_ECU_ALDO_OLP2_NS );
2813 0 : move16();
2814 :
2815 0 : set16_fx( rec_buf, 0, output_frame );
2816 0 : Qin = 0;
2817 0 : move16();
2818 0 : out_ptr = rec_buf + sub( shl( output_frame, 1 ), timesh );
2819 0 : wtda_fx( out_ptr, &Qin, ecu_rec, NULL, 0, ALDO_WINDOW, ALDO_WINDOW, /* window overlap of current frame (0: full, 2: none, or 3: half) */
2820 : output_frame );
2821 0 : return;
2822 : }
2823 :
2824 : /*--------------------------------------------------------------------------
2825 : * rec_frame_fx()
2826 : *
2827 : * Frame reconstruction
2828 : *--------------------------------------------------------------------------*/
2829 :
2830 220 : static void ivas_rec_frame_fx(
2831 : Word16 *X, /* i : FFT spectrum */
2832 : Word32 *ecu_rec, /* o : Reconstructed frame in tda domain */
2833 : const Word16 output_frame, /* i : Frame length */
2834 : const Word16 Q,
2835 : const Word16 *old_dec, /* i : end of last decoded for OLA before tda and itda */
2836 : const Word16 element_mode, /* i : IVAS element mode */
2837 : const Word16 *num_p, /* i : Number of peaks */
2838 : const Word16 *plocs /* i : Peak locations */
2839 : )
2840 : {
2841 : const Word16 *pFftTbl;
2842 : Word16 Lprot, lprotLog2Minus1;
2843 :
2844 : /* Initialize to WB constants */
2845 220 : Lprot = 512;
2846 220 : move16();
2847 220 : lprotLog2Minus1 = 9 - 1;
2848 220 : move16();
2849 220 : pFftTbl = FFT_W256; /* Table for 512-point real input FFT */
2850 220 : IF( EQ_16( output_frame, L_FRAME48k ) )
2851 : {
2852 155 : Lprot = L_PROT48k; /* 1536 = (2*output_frame)*1024/1280 */
2853 155 : move16();
2854 : }
2855 65 : ELSE IF( EQ_16( output_frame, L_FRAME32k ) )
2856 : {
2857 54 : Lprot = L_PROT32k; /* 1024 */
2858 54 : move16();
2859 54 : lprotLog2Minus1 = 10 - 1;
2860 54 : move16();
2861 54 : pFftTbl = FFT_W512; /* Table for 1024-point real input FFT */
2862 : }
2863 :
2864 : /* extend spectrum and IDFT */
2865 220 : IF( EQ_16( output_frame, L_FRAME48k ) )
2866 : {
2867 155 : ifft3_fx( X, X, Lprot );
2868 : }
2869 : ELSE
2870 : {
2871 65 : r_fft_fx_lc( pFftTbl, Lprot, shr( Lprot, 1 ), lprotLog2Minus1, X, X, 0 ); /* Inverse FFT */
2872 : }
2873 220 : Scale_sig( X, Lprot, -Q );
2874 :
2875 220 : ivas_rec_wtda_fx( X, ecu_rec, output_frame, Lprot, old_dec, element_mode, num_p, plocs );
2876 :
2877 220 : return;
2878 : }
2879 :
2880 0 : static void rec_frame_fx(
2881 : Word16 *X, /* i : FFT spectrum */
2882 : Word32 *ecu_rec, /* o : Reconstructed frame in tda domain */
2883 : const Word16 output_frame, /* i : Frame length */
2884 : const Word16 Q )
2885 : {
2886 : const Word16 *pFftTbl;
2887 : Word16 Lprot, lprotLog2Minus1;
2888 : Word32 fs;
2889 :
2890 0 : fs = L_mult0( output_frame, 50 );
2891 :
2892 : /* Initialize to WB constants */
2893 0 : Lprot = 512;
2894 0 : move16();
2895 0 : lprotLog2Minus1 = 9 - 1;
2896 0 : move16();
2897 0 : pFftTbl = FFT_W256; /* Table for 512-point real input FFT */
2898 0 : IF( EQ_16( output_frame, L_FRAME48k ) )
2899 : {
2900 0 : Lprot = L_PROT48k; /* 1536 = (2*output_frame)*1024/1280 */
2901 0 : move16();
2902 : }
2903 0 : ELSE IF( EQ_16( output_frame, L_FRAME32k ) )
2904 : {
2905 0 : Lprot = L_PROT32k; /* 1024 */
2906 0 : move16();
2907 0 : lprotLog2Minus1 = 10 - 1;
2908 0 : move16();
2909 0 : pFftTbl = FFT_W512; /* Table for 1024-point real input FFT */
2910 : }
2911 :
2912 : /* extend spectrum and IDFT */
2913 0 : IF( EQ_16( output_frame, L_FRAME48k ) )
2914 : {
2915 0 : ifft3_fx( X, X, Lprot );
2916 : }
2917 : ELSE
2918 : {
2919 0 : r_fft_fx_lc( pFftTbl, Lprot, shr( Lprot, 1 ), lprotLog2Minus1, X, X, 0 ); /* Inverse FFT */
2920 : }
2921 0 : Scale_sig( X, Lprot, -Q );
2922 :
2923 0 : rec_wtda_fx( X, ecu_rec, output_frame, Lprot, fs );
2924 :
2925 0 : return;
2926 : }
2927 :
2928 0 : static Word32 mult_32_32_q( const Word32 a, const Word32 b, const Word16 q )
2929 : {
2930 : Word32 hi;
2931 : UWord32 lo;
2932 0 : Mpy_32_32_ss( a, b, &hi, &lo );
2933 :
2934 0 : return L_or( L_shl_sat( hi, sub( 32 - 1, q ) ), L_lshr( (Word32) lo, add( q, 1 ) ) );
2935 : }
2936 :
2937 221 : static void fir_dwn_fx(
2938 : const Word16 x[], /* i : input vector Q(x_Q) */
2939 : const Word16 h[], /* i : impulse response of the FIR filter Q(h_Q) */
2940 : const Word16 h_Q, /* H's Q */
2941 : Word16 y[], /* o : output vector (result of filtering) Q~ */
2942 : const Word16 L, /* i : input vector size */
2943 : const Word16 K, /* i : order of the FIR filter (K+1 coefs.) */
2944 : const Word16 decimation /* i : decimation */
2945 : )
2946 : {
2947 : Word32 s;
2948 : Word16 i, j;
2949 : const Word16 *ptr_h, *ptr_x;
2950 : Word16 *ptr_y;
2951 : Word16 Kdiv2;
2952 : Word16 centering;
2953 : Word16 tmp;
2954 :
2955 221 : centering = sub( 16, h_Q );
2956 221 : Kdiv2 = shr( K, 1 );
2957 :
2958 221 : ptr_y = y;
2959 : /* do the filtering */
2960 1326 : FOR( i = Kdiv2; i < K; i += decimation )
2961 : {
2962 1105 : s = L_deposit_l( 0 );
2963 1105 : ptr_h = h + 1;
2964 1105 : ptr_x = x + sub( i, 1 );
2965 :
2966 42125 : FOR( j = 1; j <= i; j++ )
2967 : {
2968 41020 : s = L_mac0_sat( s, *ptr_h++, *ptr_x-- ); // Q(h_Q) + Q(x_q)
2969 : }
2970 :
2971 1105 : *ptr_y++ = extract_h( L_shl_sat( s, centering ) );
2972 1105 : move16();
2973 : }
2974 68731 : FOR( i = K; i < L; i += decimation )
2975 : {
2976 68510 : s = L_deposit_l( 0 );
2977 68510 : ptr_h = h + 1;
2978 68510 : ptr_x = x + sub( i, 1 );
2979 68510 : move16();
2980 :
2981 3701710 : FOR( j = 1; j <= K; j++ )
2982 : {
2983 3633200 : s = L_mac0_sat( s, *ptr_h++, *ptr_x-- ); // Q(h_Q) + Q(x_q)
2984 : }
2985 :
2986 68510 : *ptr_y++ = extract_h( L_shl_sat( s, centering ) );
2987 68510 : move16();
2988 : }
2989 221 : tmp = add( L, Kdiv2 );
2990 1326 : FOR( i = i; i < tmp; i += decimation )
2991 : {
2992 1105 : s = L_deposit_l( 0 );
2993 1105 : ptr_h = h + add( sub( i, L ), 1 );
2994 1105 : move16();
2995 1105 : ptr_x = x + sub( L, 1 );
2996 1105 : move16();
2997 :
2998 47985 : FOR( j = i - L + 1; j <= K; j++ )
2999 : {
3000 46880 : s = L_mac0_sat( s, *ptr_h++, *ptr_x-- );
3001 : }
3002 :
3003 1105 : *ptr_y++ = extract_h( L_shl_sat( s, centering ) );
3004 1105 : move16();
3005 : }
3006 :
3007 221 : return;
3008 : }
3009 :
3010 : /*--------------------------------------------------------------------------
3011 : * fec_ecu_pitch()
3012 : *
3013 : * Pitch/correlation analysis and adaptive analysis frame length calculation
3014 : *--------------------------------------------------------------------------*/
3015 :
3016 221 : static void fec_ecu_pitch_ivas_fx(
3017 : const Word16 *prevsynth_fx, /*Q15 16 */
3018 : Word16 *prevsynth_LP_fx, /* Q15 16 */
3019 : const Word16 L,
3020 : Word16 *N,
3021 : Word16 *min_corr_fx, /* Q15 16 */
3022 : Word16 *decimatefator,
3023 : const Word16 HqVoicing )
3024 : {
3025 :
3026 : Word16 i, filt_size;
3027 : Word16 QAsr, Ryy, cb_start, tmpQLP;
3028 : Word32 Ryytmp;
3029 : Word32 accA, accB, accBisqrt, accC, accCisqrt;
3030 : Word16 delay_ind, k;
3031 : const Word16 *Asr_LP_fx;
3032 : Word16 *ptr_LP, *ptr_LP2, *ptr_LP3, *ptr_LP4;
3033 : Word16 cb_end;
3034 : Word16 Lmul2, Lon20mul6, Lon20mul28, Lon20mul33, Lon20mul34;
3035 :
3036 :
3037 221 : SWITCH( L )
3038 : {
3039 155 : case L_FRAME48k:
3040 155 : *decimatefator = 6;
3041 155 : move16();
3042 155 : filt_size = 60;
3043 155 : move16();
3044 155 : Asr_LP_fx = Asr_LP48_fx;
3045 155 : QAsr = 17;
3046 155 : move16();
3047 155 : Lon20mul6 = 48;
3048 155 : move16();
3049 155 : Lon20mul28 = 224;
3050 155 : move16();
3051 155 : Lon20mul33 = 264;
3052 155 : move16();
3053 155 : Lon20mul34 = 272;
3054 155 : move16();
3055 155 : Lmul2 = 1920;
3056 155 : move16();
3057 155 : BREAK;
3058 :
3059 55 : case L_FRAME32k:
3060 55 : *decimatefator = 4;
3061 55 : move16();
3062 55 : filt_size = 40;
3063 55 : move16();
3064 55 : Asr_LP_fx = Asr_LP32_fx;
3065 55 : QAsr = 15;
3066 55 : move16();
3067 55 : Lon20mul6 = 48;
3068 55 : move16();
3069 55 : Lon20mul28 = 224;
3070 55 : move16();
3071 55 : Lon20mul33 = 264;
3072 55 : move16();
3073 55 : Lon20mul34 = 272;
3074 55 : move16();
3075 55 : Lmul2 = 1280;
3076 55 : move16();
3077 55 : BREAK;
3078 :
3079 11 : case L_FRAME16k:
3080 11 : *decimatefator = 2;
3081 11 : move16();
3082 11 : filt_size = 20;
3083 11 : move16();
3084 11 : Asr_LP_fx = Asr_LP16_fx;
3085 11 : QAsr = 15;
3086 11 : move16();
3087 11 : Lon20mul6 = 48;
3088 11 : move16();
3089 11 : Lon20mul28 = 224;
3090 11 : move16();
3091 11 : Lon20mul33 = 264;
3092 11 : move16();
3093 11 : Lon20mul34 = 272;
3094 11 : move16();
3095 11 : Lmul2 = 640;
3096 11 : move16();
3097 11 : BREAK;
3098 :
3099 0 : default:
3100 0 : *decimatefator = 2;
3101 0 : move16();
3102 0 : filt_size = 40;
3103 0 : move16();
3104 0 : Asr_LP_fx = Asr_LP16_fx;
3105 0 : QAsr = 15;
3106 0 : move16();
3107 0 : Lon20mul6 = 48;
3108 0 : move16();
3109 0 : Lon20mul28 = 224;
3110 0 : move16();
3111 0 : Lon20mul33 = 264;
3112 0 : move16();
3113 0 : Lon20mul34 = 272;
3114 0 : move16();
3115 0 : Lmul2 = 320;
3116 0 : move16();
3117 0 : BREAK;
3118 : }
3119 :
3120 :
3121 : /* Resampling to work at 8Khz */
3122 221 : fir_dwn_fx( prevsynth_fx, Asr_LP_fx, QAsr, prevsynth_LP_fx, Lmul2, filt_size, *decimatefator ); /* resampling without delay */
3123 :
3124 :
3125 221 : tmpQLP = Find_Max_Norm16( prevsynth_LP_fx, 320 );
3126 221 : Scale_sig( prevsynth_LP_fx, 320, sub( tmpQLP, 3 ) ); /* to avoid over scaling */
3127 :
3128 :
3129 : /* Correlation analysis */
3130 221 : *min_corr_fx = 0;
3131 221 : move16();
3132 221 : accC = L_deposit_l( 0 );
3133 :
3134 221 : ptr_LP = prevsynth_LP_fx + Lon20mul34;
3135 10829 : FOR( k = 0; k < Lon20mul6; k++ )
3136 : {
3137 10608 : accC = L_mac0( accC, *ptr_LP, *ptr_LP );
3138 10608 : ptr_LP++;
3139 : }
3140 :
3141 :
3142 221 : IF( EQ_16( HqVoicing, 1 ) )
3143 : {
3144 0 : cb_start = 0;
3145 0 : move16();
3146 0 : cb_end = Lon20mul33;
3147 0 : move16();
3148 : }
3149 : ELSE
3150 : {
3151 221 : cb_start = 0;
3152 221 : move16();
3153 221 : cb_end = Lon20mul28;
3154 221 : move16();
3155 : }
3156 :
3157 221 : accB = 0;
3158 221 : move16();
3159 221 : delay_ind = cb_start;
3160 221 : move16();
3161 :
3162 40337 : FOR( i = cb_start; i < cb_end; i++ ) /* cb_end = 35 let 6 ms min of loop size */
3163 : {
3164 40172 : accA = 0;
3165 40172 : move16();
3166 40172 : IF( EQ_16( i, cb_start ) )
3167 : {
3168 221 : accB = 0;
3169 221 : move16();
3170 221 : ptr_LP = prevsynth_LP_fx;
3171 221 : ptr_LP2 = prevsynth_LP_fx + Lon20mul34;
3172 10829 : FOR( k = 0; k < Lon20mul6; k++ )
3173 : {
3174 10608 : accA = L_mac0( accA, *ptr_LP, *ptr_LP2 );
3175 10608 : accB = L_mac0( accB, *ptr_LP, *ptr_LP );
3176 10608 : ptr_LP++;
3177 10608 : ptr_LP2++;
3178 : }
3179 : }
3180 : ELSE
3181 : {
3182 :
3183 :
3184 39951 : accB = L_mac0( L_msu0( accB, prevsynth_LP_fx[i - 1], prevsynth_LP_fx[i - 1] ), prevsynth_LP_fx[i + Lon20mul6 - 1], prevsynth_LP_fx[i + Lon20mul6 - 1] ); /* tmpQLP-5 */
3185 :
3186 :
3187 39951 : ptr_LP3 = prevsynth_LP_fx + i;
3188 39951 : ptr_LP4 = prevsynth_LP_fx + Lon20mul34;
3189 :
3190 1957599 : FOR( k = 0; k < Lon20mul6; k++ )
3191 : {
3192 1917648 : accA = L_mac0( accA, *ptr_LP3, *ptr_LP4 ); /*2* tmpQLP-5 */
3193 1917648 : ptr_LP3++;
3194 1917648 : ptr_LP4++;
3195 : }
3196 : }
3197 :
3198 : /*accB*/
3199 : /*accC*/
3200 : /*accA Q 6-2*tmpQLP*/
3201 :
3202 40172 : accBisqrt = Isqrt( accB ); /* Q31 - 3 + tmpQLP */
3203 40172 : accCisqrt = Isqrt( accC ); /* Q31 - 3 + tmpQLP*/
3204 :
3205 :
3206 40172 : Ryytmp = L_shl_sat( Mult_32_32( accA, accCisqrt ), Q15 ); /*Q 6 -2*tmpQLP + Q31 - 3 + tmpQLP -16 -3 +tmpQLP = Q15*/
3207 40172 : Ryy = extract_h( L_shl_sat( Mult_32_32( Ryytmp, accBisqrt ), 16 ) ); /*Q15 + Q31 - 3 + tmpQLP -15 + 3- tmpQLP = Q31*/
3208 :
3209 40172 : IF( GT_16( Ryy, *min_corr_fx ) )
3210 : {
3211 1832 : *min_corr_fx = Ryy;
3212 1832 : move16();
3213 1832 : delay_ind = i;
3214 1832 : move16();
3215 : }
3216 :
3217 40172 : test();
3218 40172 : IF( HqVoicing == 0 && GT_16( *min_corr_fx, 31130 ) )
3219 : {
3220 56 : BREAK;
3221 : }
3222 : }
3223 :
3224 221 : *N = sub( Lon20mul34, delay_ind );
3225 221 : move16();
3226 :
3227 221 : Scale_sig( prevsynth_LP_fx, 320, negate( sub( tmpQLP, 3 ) ) );
3228 221 : return;
3229 : }
3230 :
3231 0 : static void fec_ecu_pitch_fx(
3232 : const Word16 *prevsynth_fx, /*Q15 16 */
3233 : Word16 *prevsynth_LP_fx, /* Q15 16 */
3234 : const Word16 L,
3235 : Word16 *N,
3236 : Word16 *min_corr_fx, /* Q15 16 */
3237 : Word16 *decimatefator,
3238 : const Word16 HqVoicing )
3239 : {
3240 :
3241 : Word16 i, filt_size;
3242 : Word16 QAsr, Ryy, cb_start, tmpQLP;
3243 : Word32 Ryytmp;
3244 : Word32 accA, accB, accBisqrt, accC, accCisqrt;
3245 : Word16 delay_ind, k;
3246 : const Word16 *Asr_LP_fx;
3247 : Word16 *ptr_LP, *ptr_LP2, *ptr_LP3, *ptr_LP4;
3248 : Word16 cb_end;
3249 : Word16 Lmul2, Lon20mul6, Lon20mul28, Lon20mul33, Lon20mul34;
3250 :
3251 :
3252 0 : SWITCH( L )
3253 : {
3254 0 : case L_FRAME48k:
3255 0 : *decimatefator = 6;
3256 0 : move16();
3257 0 : filt_size = 60;
3258 0 : move16();
3259 0 : Asr_LP_fx = Asr_LP48_fx;
3260 0 : QAsr = 17;
3261 0 : move16();
3262 0 : Lon20mul6 = 48;
3263 0 : move16();
3264 0 : Lon20mul28 = 224;
3265 0 : move16();
3266 0 : Lon20mul33 = 264;
3267 0 : move16();
3268 0 : Lon20mul34 = 272;
3269 0 : move16();
3270 0 : Lmul2 = 1920;
3271 0 : move16();
3272 0 : BREAK;
3273 :
3274 0 : case L_FRAME32k:
3275 0 : *decimatefator = 4;
3276 0 : move16();
3277 0 : filt_size = 40;
3278 0 : move16();
3279 0 : Asr_LP_fx = Asr_LP32_fx;
3280 0 : QAsr = 15;
3281 0 : move16();
3282 0 : Lon20mul6 = 48;
3283 0 : move16();
3284 0 : Lon20mul28 = 224;
3285 0 : move16();
3286 0 : Lon20mul33 = 264;
3287 0 : move16();
3288 0 : Lon20mul34 = 272;
3289 0 : move16();
3290 0 : Lmul2 = 1280;
3291 0 : move16();
3292 0 : BREAK;
3293 :
3294 0 : case L_FRAME16k:
3295 0 : *decimatefator = 2;
3296 0 : move16();
3297 0 : filt_size = 20;
3298 0 : move16();
3299 0 : Asr_LP_fx = Asr_LP16_fx;
3300 0 : QAsr = 15;
3301 0 : move16();
3302 0 : Lon20mul6 = 48;
3303 0 : move16();
3304 0 : Lon20mul28 = 224;
3305 0 : move16();
3306 0 : Lon20mul33 = 264;
3307 0 : move16();
3308 0 : Lon20mul34 = 272;
3309 0 : move16();
3310 0 : Lmul2 = 640;
3311 0 : move16();
3312 0 : BREAK;
3313 :
3314 0 : default:
3315 0 : *decimatefator = 2;
3316 0 : move16();
3317 0 : filt_size = 40;
3318 0 : move16();
3319 0 : Asr_LP_fx = Asr_LP16_fx;
3320 0 : QAsr = 15;
3321 0 : move16();
3322 0 : Lon20mul6 = 48;
3323 0 : move16();
3324 0 : Lon20mul28 = 224;
3325 0 : move16();
3326 0 : Lon20mul33 = 264;
3327 0 : move16();
3328 0 : Lon20mul34 = 272;
3329 0 : move16();
3330 0 : Lmul2 = 320;
3331 0 : move16();
3332 0 : BREAK;
3333 : }
3334 :
3335 :
3336 : /* Resampling to work at 8Khz */
3337 0 : fir_dwn_fx( prevsynth_fx, Asr_LP_fx, QAsr, prevsynth_LP_fx, Lmul2, filt_size, *decimatefator ); /* resampling without delay */
3338 :
3339 :
3340 0 : tmpQLP = Find_Max_Norm16( prevsynth_LP_fx, 320 );
3341 0 : Scale_sig( prevsynth_LP_fx, 320, sub( tmpQLP, 3 ) ); /* to avoid over scaling */
3342 :
3343 :
3344 : /* Correlation analysis */
3345 0 : *min_corr_fx = 0;
3346 0 : move16();
3347 0 : accC = L_deposit_l( 0 );
3348 :
3349 0 : ptr_LP = prevsynth_LP_fx + Lon20mul34;
3350 0 : FOR( k = 0; k < Lon20mul6; k++ )
3351 : {
3352 0 : accC = L_mac0( accC, *ptr_LP, *ptr_LP );
3353 0 : ptr_LP++;
3354 : }
3355 :
3356 :
3357 0 : IF( EQ_16( HqVoicing, 1 ) )
3358 : {
3359 0 : cb_start = 0;
3360 0 : move16();
3361 0 : cb_end = Lon20mul33;
3362 0 : move16();
3363 : }
3364 : ELSE
3365 : {
3366 0 : cb_start = 0;
3367 0 : move16();
3368 0 : cb_end = Lon20mul28;
3369 0 : move16();
3370 : }
3371 :
3372 0 : accB = 0;
3373 0 : move16();
3374 0 : delay_ind = cb_start;
3375 0 : move16();
3376 :
3377 0 : FOR( i = cb_start; i < cb_end; i++ ) /* cb_end = 35 let 6 ms min of loop size */
3378 : {
3379 0 : accA = 0;
3380 0 : move16();
3381 0 : IF( EQ_16( i, cb_start ) )
3382 : {
3383 0 : accB = 0;
3384 0 : move16();
3385 0 : ptr_LP = prevsynth_LP_fx;
3386 0 : ptr_LP2 = prevsynth_LP_fx + Lon20mul34;
3387 0 : FOR( k = 0; k < Lon20mul6; k++ )
3388 : {
3389 0 : accA = L_mac0( accA, *ptr_LP, *ptr_LP2 );
3390 0 : accB = L_mac0( accB, *ptr_LP, *ptr_LP );
3391 0 : ptr_LP++;
3392 0 : ptr_LP2++;
3393 : }
3394 : }
3395 : ELSE
3396 : {
3397 :
3398 :
3399 0 : accB = L_mac0( L_msu0( accB, prevsynth_LP_fx[i - 1], prevsynth_LP_fx[i - 1] ), prevsynth_LP_fx[i + Lon20mul6 - 1], prevsynth_LP_fx[i + Lon20mul6 - 1] ); /* tmpQLP-5 */
3400 :
3401 :
3402 0 : ptr_LP3 = prevsynth_LP_fx + i;
3403 0 : ptr_LP4 = prevsynth_LP_fx + Lon20mul34;
3404 :
3405 0 : FOR( k = 0; k < Lon20mul6; k++ )
3406 : {
3407 0 : accA = L_mac0( accA, *ptr_LP3, *ptr_LP4 ); /*2* tmpQLP-5 */
3408 0 : ptr_LP3++;
3409 0 : ptr_LP4++;
3410 : }
3411 : }
3412 :
3413 : /*accB*/
3414 : /*accC*/
3415 : /*accA Q 6-2*tmpQLP*/
3416 :
3417 0 : accBisqrt = Isqrt( accB ); /* Q31 - 3 + tmpQLP */
3418 0 : accCisqrt = Isqrt( accC ); /* Q31 - 3 + tmpQLP*/
3419 :
3420 :
3421 0 : Ryytmp = mult_32_32_q( accA, accCisqrt, sub( 16 + 3, tmpQLP ) ); /*Q 6 -2*tmpQLP + Q31 - 3 + tmpQLP -16 -3 +tmpQLP = Q15*/
3422 0 : Ryytmp = mult_32_32_q( Ryytmp, accBisqrt, add( 15 - 3, tmpQLP ) ); /*Q15 + Q31 - 3 + tmpQLP -15 + 3- tmpQLP = Q31*/
3423 0 : Ryy = extract_h( Ryytmp ); /* Q15 */
3424 :
3425 :
3426 0 : IF( GT_16( Ryy, *min_corr_fx ) )
3427 : {
3428 0 : *min_corr_fx = Ryy;
3429 0 : move16();
3430 0 : delay_ind = i;
3431 0 : move16();
3432 : }
3433 :
3434 0 : test();
3435 0 : IF( HqVoicing == 0 && GT_16( *min_corr_fx, 31130 ) )
3436 : {
3437 0 : BREAK;
3438 : }
3439 : }
3440 :
3441 0 : *N = sub( Lon20mul34, delay_ind );
3442 0 : move16();
3443 :
3444 0 : Scale_sig( prevsynth_LP_fx, 320, negate( sub( tmpQLP, 3 ) ) );
3445 0 : return;
3446 : }
3447 :
3448 8 : static void sin_cos_est_fx( Word32 phi, Word16 *cosfreq, Word16 *sinfreq )
3449 : {
3450 :
3451 :
3452 : /* i phi : normalized frequency beteween 0 and Pi (nyquist) in Q30 */
3453 : /* o cosfreq & sinfreq : cos(phi) and sin (phi) in Q15 */
3454 :
3455 : Word16 i;
3456 : Word32 delta;
3457 : Word32 imin;
3458 : Word16 sinb, cosb;
3459 : Word32 sinv, cosv, tmp;
3460 :
3461 8 : i = 0;
3462 8 : move16();
3463 588 : FOR( imin = 0; imin < phi; imin += 4392264 )
3464 : {
3465 580 : i = add( i, 1 );
3466 : }
3467 :
3468 8 : delta = L_sub( phi, imin ); /*Q30 */
3469 8 : sinb = sincos_t_rad3_fx[i];
3470 8 : move16(); /*Q15 */
3471 8 : cosb = sincos_t_rad3_fx[384 - i];
3472 8 : move16(); /*Q15 */
3473 :
3474 : /*sinv = sin(phi) = sinb*cos(delta)+cosb*sin(delta) */
3475 : /*cosv = cos(phi) = cosb*cos(delta)-sinb*sin(delta) */
3476 : /*sin(delta) is approximated by delta for very small delta; cos(delta) is approximated by 1 */
3477 8 : tmp = L_shl( Mult_32_16( delta, cosb ), 1 ); /*Q31 */
3478 8 : sinv = L_add( L_deposit_h( sinb ), tmp );
3479 8 : tmp = L_shl( Mult_32_16( delta, sinb ), 1 ); /*Q31 */
3480 8 : cosv = L_sub_sat( L_deposit_h( cosb ), tmp );
3481 8 : *sinfreq = round_fx_sat( sinv );
3482 8 : move16();
3483 8 : *cosfreq = round_fx_sat( cosv );
3484 8 : move16();
3485 :
3486 8 : return;
3487 : }
3488 :
3489 32 : static Word16 abs_iter_fx( Word16 re /*Qx*/, Word16 im /*Qx*/, Word16 N )
3490 : {
3491 : Word16 A, tmp, L_tmp1, L_tmp2;
3492 : Word16 i, exp;
3493 :
3494 : /*const Word16 cor[10] = { 23170, 20724, 20106, 19950, 19911, 19902, 19899, 19899, 19899, 19898}; */
3495 :
3496 32 : exp = norm_s( re );
3497 32 : exp = s_min( exp, norm_s( im ) );
3498 32 : exp = sub( exp, 2 );
3499 :
3500 32 : re = shl( re, exp );
3501 32 : im = shl( im, exp );
3502 :
3503 :
3504 32 : IF( im < 0 )
3505 : {
3506 20 : im = negate( im );
3507 : }
3508 : ELSE
3509 : {
3510 12 : re = negate( re );
3511 : }
3512 32 : tmp = re;
3513 32 : move16();
3514 32 : re = im;
3515 32 : move16();
3516 32 : im = tmp;
3517 32 : move16();
3518 :
3519 :
3520 192 : FOR( i = 0; i < N; i++ )
3521 : {
3522 160 : L_tmp1 = shr( im, i );
3523 160 : L_tmp2 = shr( re, i );
3524 160 : IF( im < 0 )
3525 : {
3526 83 : L_tmp1 = negate( L_tmp1 );
3527 : }
3528 : ELSE
3529 : {
3530 77 : L_tmp2 = negate( L_tmp2 );
3531 : }
3532 160 : re = add( re, L_tmp1 );
3533 160 : im = add( im, L_tmp2 );
3534 : }
3535 32 : i = s_min( sub( i, 1 ), 9 );
3536 32 : tmp = abs_s( re );
3537 : /*A = round_fx(L_shr(L_mult(tmp, cor[i]), exp)); //this can be ommited, if we don't need the exact abs value */
3538 32 : A = shr_sat( tmp, exp );
3539 32 : return A;
3540 : }
3541 : /*--------------------------------------------------------------------------
3542 : * fec_ecu_dft()
3543 : *
3544 : * DFT analysis on adaptive frame length. Analysis frame stretched to
3545 : * next power of 2 using linear interpolation.
3546 : *--------------------------------------------------------------------------*/
3547 :
3548 1 : static void ivas_fec_ecu_dft_fx(
3549 : const Word16 *prevsynth_LP, /*Qin */
3550 : const Word16 N,
3551 : Word16 *Tfr, /*Qout */
3552 : Word16 *Tfi, /*Qout */
3553 : Word32 *sum_Tf_abs, /*Qout; */
3554 : Word16 *Tf_abs, /*Qout */
3555 : Word16 *Nfft,
3556 : Word16 *exp, /*Qout = Qin+exp */
3557 : const Word16 element_mode /* i : IVAS element mode */
3558 : )
3559 : {
3560 : Word32 L_tmp, Tmp, Tfr32[512], Tfi32[512], fac, *Pt1, *Pt2;
3561 : Word16 i, tmp, tmp_short, N_LP, target[2 * L_FRAME48k], Tfr16[FEC_FFT_MAX_SIZE], *pt1, *pt2, *pt3, Lon20;
3562 : Word16 tmp_loop;
3563 : Word16 alignment_point;
3564 :
3565 1 : Lon20 = 8;
3566 1 : move16();
3567 1 : IF( element_mode == EVS_MONO )
3568 : {
3569 0 : alignment_point = sub( shl( 160, 1 ), i_mult( 3, Lon20 ) );
3570 : }
3571 : ELSE
3572 : {
3573 1 : alignment_point = shl( 160, 1 );
3574 : }
3575 1 : tmp = sub( alignment_point, N );
3576 1 : Copy( &prevsynth_LP[tmp], target, N );
3577 :
3578 : /* DFT */
3579 :
3580 1 : L_tmp = L_deposit_l( N );
3581 10 : FOR( tmp = 0; L_tmp <= 16384; tmp++ )
3582 : {
3583 9 : L_tmp = L_shl( L_tmp, 1 );
3584 : }
3585 1 : *Nfft = shl( 1, sub( 15, tmp ) );
3586 1 : move16();
3587 :
3588 1 : set32_fx( Tfr32, 0, *Nfft );
3589 1 : set32_fx( Tfi32, 0, *Nfft );
3590 1 : Tfr16[0] = target[0];
3591 1 : move16();
3592 1 : Tfr16[*Nfft - 1] = target[N - 1];
3593 1 : move16();
3594 :
3595 1 : IF( EQ_16( *Nfft, N ) )
3596 : {
3597 0 : Copy( &target[1], &Tfr16[1], sub( *Nfft, 2 ) );
3598 : }
3599 : ELSE
3600 : {
3601 :
3602 1 : tmp = div_s( sub( N, 1 ), sub( *Nfft, 1 ) );
3603 1 : Tmp = L_deposit_l( tmp );
3604 1 : fac = L_add( Tmp, 0 );
3605 1 : tmp_loop = sub( *Nfft, 1 );
3606 63 : FOR( i = 1; i < tmp_loop; i++ ) /* interpolation for FFT */
3607 : {
3608 62 : tmp_short = extract_l( L_shr( Tmp, 15 ) );
3609 62 : tmp = extract_l( L_msu( Tmp, tmp_short, 16384 ) );
3610 62 : L_tmp = L_mult( sub_sat( target[tmp_short + 1], target[tmp_short] ), tmp ); /*Qin+16 */
3611 62 : Tfr16[i] = add_sat( target[tmp_short], round_fx_sat( L_tmp ) );
3612 62 : move16(); /*Qin */
3613 62 : Tmp = L_add( Tmp, fac );
3614 : }
3615 : }
3616 :
3617 :
3618 : /*to avoid overflow in DoRTFTn_fx() */
3619 1 : tmp = Exp16Array( *Nfft, Tfr16 );
3620 1 : *exp = add( tmp, add( 2, norm_s( *Nfft ) ) );
3621 1 : move16();
3622 1 : Copy_Scale_sig_16_32_no_sat( Tfr16, Tfr32, *Nfft, *exp ); /*Qin+exp; */
3623 1 : *exp = s_min( *exp, 15 );
3624 :
3625 1 : DoRTFTn_fx( Tfr32, Tfi32, *Nfft );
3626 1 : N_LP = shr( *Nfft, 1 );
3627 :
3628 :
3629 1 : L_tmp = L_deposit_l( 0 );
3630 :
3631 1 : pt1 = Tfr;
3632 1 : pt2 = Tfi;
3633 1 : pt3 = Tf_abs;
3634 1 : Pt1 = Tfr32;
3635 1 : Pt2 = Tfi32;
3636 33 : FOR( i = 0; i < N_LP; i++ )
3637 : {
3638 32 : *pt1 = extract_h( *Pt1 ); /*Qin+exp-16 */
3639 32 : move16();
3640 32 : *pt2 = extract_h( *Pt2 ); /*Qin+exp-16 */
3641 32 : move16();
3642 32 : *pt3 = abs_iter_fx( Tfr[i], Tfi[i], 5 );
3643 32 : move16(); /*Qin+exp-16 */
3644 32 : L_tmp = L_mac0( L_tmp, *pt3, 1 ); /*Qin+exp-16 */
3645 32 : pt1++;
3646 32 : pt2++;
3647 32 : pt3++;
3648 32 : Pt1++;
3649 32 : Pt2++;
3650 : }
3651 1 : *sum_Tf_abs = L_tmp;
3652 1 : move32();
3653 1 : *exp = sub( *exp, 16 );
3654 1 : move16();
3655 1 : return;
3656 : }
3657 :
3658 0 : static void fec_ecu_dft_fx(
3659 : const Word16 *prevsynth_LP, /*Qin */
3660 : const Word16 N,
3661 : Word16 *Tfr, /*Qout */
3662 : Word16 *Tfi, /*Qout */
3663 : Word32 *sum_Tf_abs, /*Qout; */
3664 : Word16 *Tf_abs, /*Qout */
3665 : Word16 *Nfft,
3666 : Word16 *exp /*Qout = Qin+exp */
3667 : )
3668 : {
3669 : Word32 L_tmp, Tmp, Tfr32[512], Tfi32[512], fac, *Pt1, *Pt2;
3670 : Word16 i, tmp, tmp_short, N_LP, target[2 * L_FRAME48k], Tfr16[FEC_FFT_MAX_SIZE], *pt1, *pt2, *pt3;
3671 : Word16 tmp_loop;
3672 0 : tmp = sub( 296, N );
3673 0 : Copy( &prevsynth_LP[tmp], target, N );
3674 :
3675 :
3676 : /* DFT */
3677 :
3678 0 : L_tmp = L_deposit_l( N );
3679 0 : FOR( tmp = 0; L_tmp <= 16384; tmp++ )
3680 : {
3681 0 : L_tmp = L_shl( L_tmp, 1 );
3682 : }
3683 0 : *Nfft = shl( 1, sub( 15, tmp ) );
3684 0 : move16();
3685 :
3686 :
3687 0 : set32_fx( Tfr32, 0, *Nfft );
3688 0 : set32_fx( Tfi32, 0, *Nfft );
3689 0 : Tfr16[0] = target[0];
3690 0 : move16();
3691 0 : Tfr16[*Nfft - 1] = target[N - 1];
3692 0 : move16();
3693 :
3694 0 : IF( EQ_16( *Nfft, N ) )
3695 : {
3696 0 : Copy( &target[1], &Tfr16[1], sub( *Nfft, 2 ) );
3697 : }
3698 : ELSE
3699 : {
3700 :
3701 0 : tmp = div_s( sub( N, 1 ), sub( *Nfft, 1 ) );
3702 0 : Tmp = L_deposit_l( tmp );
3703 0 : fac = L_add( Tmp, 0 );
3704 0 : tmp_loop = sub( *Nfft, 1 );
3705 0 : FOR( i = 1; i < tmp_loop; i++ ) /* interpolation for FFT */
3706 : {
3707 0 : tmp_short = extract_l( L_shr( Tmp, 15 ) );
3708 0 : tmp = extract_l( L_msu( Tmp, tmp_short, 16384 ) );
3709 0 : L_tmp = L_mult( sub_sat( target[tmp_short + 1], target[tmp_short] ), tmp ); /*Qin+16 */
3710 0 : Tfr16[i] = add_sat( target[tmp_short], round_fx_sat( L_tmp ) );
3711 0 : move16(); /*Qin */
3712 0 : Tmp = L_add( Tmp, fac );
3713 : }
3714 : }
3715 :
3716 :
3717 : /*to avoid overflow in DoRTFTn_fx() */
3718 0 : tmp = Exp16Array( *Nfft, Tfr16 );
3719 0 : *exp = add( tmp, add( 2, norm_s( *Nfft ) ) );
3720 0 : move16();
3721 : {
3722 0 : Word16 loctmp = *exp;
3723 0 : move16();
3724 0 : loctmp = s_min( 15, loctmp );
3725 0 : Copy_Scale_sig_16_32_DEPREC( Tfr16, Tfr32, *Nfft, loctmp ); /*Qin+exp; */ /*Even with limiting loctmp, if Copy_Scale_sig_16_32_no_sat() is used, can lead to 1 difference */
3726 : }
3727 :
3728 0 : DoRTFTn_fx( Tfr32, Tfi32, *Nfft );
3729 0 : N_LP = shr( *Nfft, 1 );
3730 :
3731 :
3732 0 : L_tmp = L_deposit_l( 0 );
3733 :
3734 0 : pt1 = Tfr;
3735 0 : pt2 = Tfi;
3736 0 : pt3 = Tf_abs;
3737 0 : Pt1 = Tfr32;
3738 0 : Pt2 = Tfi32;
3739 0 : FOR( i = 0; i < N_LP; i++ )
3740 : {
3741 0 : *pt1 = extract_h( *Pt1 ); /*Qin+exp-16 */
3742 0 : move16();
3743 0 : *pt2 = extract_h( *Pt2 ); /*Qin+exp-16 */
3744 0 : move16();
3745 0 : *pt3 = abs_iter_fx( Tfr[i], Tfi[i], 5 );
3746 0 : move16(); /*Qin+exp-16 */
3747 0 : L_tmp = L_mac0( L_tmp, *pt3, 1 ); /*Qin+exp-16 */
3748 0 : pt1++;
3749 0 : pt2++;
3750 0 : pt3++;
3751 0 : Pt1++;
3752 0 : Pt2++;
3753 : }
3754 0 : *sum_Tf_abs = L_tmp;
3755 0 : move32();
3756 0 : *exp = sub( *exp, 16 );
3757 0 : move16();
3758 0 : return;
3759 : }
3760 :
3761 8 : static void singenerator_fx(
3762 : const Word16 L, /* i : size of output */
3763 : const Word16 cosfreq, /* i : cosine of 1-sample dephasing at the given frequency Q15*/
3764 : const Word16 sinfreq, /* i : sine of 1-sample dephasing at the given frequency Q15*/
3765 : const Word16 a_re,
3766 : /* i : real part of complex spectral coefficient at the given frequency */ /*Qin */
3767 : const Word16 a_im,
3768 : /* i : imag part of complex spectral coefficient at the given frequency */ /*Qin */
3769 : Word32 xx[] /* o : output vector */ /*Qin+16 */
3770 : )
3771 : {
3772 :
3773 : Word32 *ptr, L_C0, L_S0, L_C1, L_S1;
3774 : Word16 C0, S0, C1, S1;
3775 : Word16 i;
3776 :
3777 8 : L_S0 = L_deposit_l( 0 ); /*prevent warning*/
3778 8 : L_C0 = L_deposit_h( a_re ); /*Qin+16 */
3779 8 : S0 = a_im;
3780 8 : move16();
3781 :
3782 8 : ptr = xx;
3783 :
3784 8 : *ptr = L_add_sat( *ptr, L_C0 );
3785 8 : move32();
3786 8 : ptr++;
3787 :
3788 5120 : FOR( i = 0; i < L / 2 - 1; i++ )
3789 : {
3790 5112 : C0 = extract_h( L_C0 ); /*Qin */
3791 5112 : L_C1 = L_mult( C0, cosfreq ); /*Qin+16 */
3792 5112 : L_C1 = L_msu( L_C1, S0, sinfreq ); /*Qin+16 */
3793 5112 : L_S1 = L_mult( C0, sinfreq );
3794 5112 : S1 = mac_r( L_S1, S0, cosfreq );
3795 5112 : *ptr = L_add_sat( *ptr, L_C1 );
3796 5112 : move32(); /*Qin+16 */
3797 5112 : ptr++;
3798 :
3799 5112 : C1 = extract_h( L_C1 );
3800 5112 : L_C0 = L_mult( C1, cosfreq );
3801 5112 : L_C0 = L_msu( L_C0, S1, sinfreq );
3802 5112 : L_S0 = L_mult( C1, sinfreq );
3803 5112 : S0 = mac_r( L_S0, S1, cosfreq );
3804 5112 : *ptr = L_add_sat( *ptr, L_C0 );
3805 5112 : move32();
3806 5112 : ptr++;
3807 : }
3808 :
3809 8 : C0 = extract_h( L_C0 );
3810 8 : S0 = extract_h( L_S0 );
3811 8 : L_C1 = L_mult( C0, cosfreq );
3812 8 : L_C1 = L_msu( L_C1, S0, sinfreq );
3813 8 : *ptr = L_add_sat( *ptr, L_C1 );
3814 8 : move32();
3815 8 : ptr++;
3816 :
3817 8 : return;
3818 : }
3819 :
3820 1 : static void sinusoidal_synthesis_fx(
3821 : const Word16 *Tfr, /*Qin */
3822 : const Word16 *Tfi, /*Qin */
3823 : Word16 *Tf_abs, /*Qin */
3824 : const Word16 N,
3825 : const Word16 L,
3826 : const Word16 decimate_factor,
3827 : const Word16 Nfft,
3828 : const Word32 sum_Tf_abs, /*Qin */
3829 : Word16 *synthesis, /*Qin */
3830 : const Word16 HqVoicing,
3831 : Word16 exp )
3832 : {
3833 1 : Word16 i, k, nb_pulses, indmax = 0, nb_pulses_final;
3834 : Word16 pulses[FEC_MAX / 2];
3835 : Word16 mmax, maxi;
3836 : Word32 cumsum, freq, L_tmp;
3837 : Word16 freqi[FEC_NB_PULSE_MAX], tmp, q, inv_den, new_s, old, cpt;
3838 : Word16 a_re[FEC_NB_PULSE_MAX], a_im[FEC_NB_PULSE_MAX];
3839 1 : Word16 Lon20_10 = 80;
3840 : Word16 flag, Len;
3841 : Word16 cosfreq, sinfreq, sN, PL, glued;
3842 : Word32 synthesis_fx[2 * L_FRAME48k];
3843 : Word16 *pt1, *pt2, *pt3, *pt4;
3844 :
3845 1 : move16(); // indmax
3846 1 : move16(); // Lon20_10
3847 1 : flag = HqVoicing;
3848 1 : move16();
3849 1 : if ( GT_16( N, Lon20_10 ) )
3850 : {
3851 0 : flag = 1;
3852 0 : move16(); /*flag corresponds to condition sub(N, Lon20_10)>0 || HqVoicing */
3853 : }
3854 :
3855 :
3856 1 : pt4 = pulses;
3857 1 : nb_pulses = 0;
3858 1 : move16();
3859 1 : PL = 0;
3860 1 : move16();
3861 1 : cpt = 0;
3862 1 : move16();
3863 1 : old = 0;
3864 1 : move16();
3865 1 : glued = 1;
3866 1 : move16();
3867 1 : new_s = Tf_abs[1]; // Qin
3868 1 : move16();
3869 1 : if ( flag )
3870 : {
3871 0 : PL = 1;
3872 0 : move16();
3873 : }
3874 1 : tmp = sub( shr( N, 1 ), 3 );
3875 26 : WHILE( LE_16( cpt, tmp ) )
3876 : {
3877 25 : test();
3878 25 : IF( GT_16( Tf_abs[cpt], old ) && GT_16( Tf_abs[cpt], new_s ) )
3879 10 : {
3880 : Word16 tmp2;
3881 :
3882 10 : glued = cpt;
3883 10 : move16();
3884 :
3885 10 : tmp2 = add( add( cpt, PL ), 1 );
3886 20 : FOR( i = glued; i < tmp2; i++ )
3887 : {
3888 10 : *pt4++ = i;
3889 10 : move16();
3890 10 : nb_pulses++;
3891 10 : move16();
3892 : }
3893 10 : old = Tf_abs[cpt + PL];
3894 10 : move16();
3895 10 : new_s = Tf_abs[cpt + 2 + PL];
3896 10 : move16();
3897 10 : cpt = add( add( cpt, PL ), 1 );
3898 10 : move16();
3899 10 : glued = 1;
3900 10 : move16();
3901 : }
3902 : ELSE
3903 : {
3904 15 : old = Tf_abs[cpt];
3905 15 : move16();
3906 15 : new_s = Tf_abs[cpt + 2];
3907 15 : move16();
3908 15 : cpt++;
3909 15 : glued = 0;
3910 15 : move16();
3911 : }
3912 : }
3913 :
3914 :
3915 1 : nb_pulses_final = 0;
3916 1 : move16();
3917 :
3918 1 : sN = sub( 13, norm_s( Nfft ) ); /*for amplitude normalization by 2/nfft */
3919 :
3920 1 : cumsum = L_deposit_l( 0 );
3921 :
3922 :
3923 1 : L_tmp = Mult_32_16( sum_Tf_abs, 22938 ); // Qin
3924 :
3925 1 : pt1 = a_re;
3926 1 : pt2 = a_im;
3927 1 : pt3 = freqi;
3928 :
3929 1 : maxi = s_min( FEC_NB_PULSE_MAX, nb_pulses );
3930 1 : nb_pulses_final = maxi;
3931 1 : move16();
3932 :
3933 1 : Len = shl( L, 1 );
3934 1 : IF( HqVoicing )
3935 : {
3936 0 : FOR( i = 0; i < maxi; i++ )
3937 : {
3938 0 : mmax = 0;
3939 0 : move16();
3940 0 : pt4 = pulses;
3941 0 : FOR( k = 0; k < nb_pulses; k++ )
3942 : {
3943 0 : tmp = *pt4++;
3944 0 : move16();
3945 0 : if ( GT_16( Tf_abs[tmp], mmax ) )
3946 : {
3947 0 : indmax = tmp;
3948 0 : move16();
3949 : }
3950 0 : mmax = s_max( Tf_abs[tmp], mmax );
3951 : }
3952 :
3953 0 : *pt1++ = Tfr[indmax];
3954 0 : move16(); /*L_shr(Tfr[indmax], sN); //instead shr -> scaling of a_re is Qin+sN */
3955 0 : *pt2++ = Tfi[indmax];
3956 0 : move16(); /*L_shr(Tfi[indmax], sN); //instead shr -> scaling of a_im is Qin+sN */
3957 0 : *pt3++ = indmax;
3958 0 : move16();
3959 0 : Tf_abs[indmax] = -1;
3960 0 : move16();
3961 : }
3962 : }
3963 : ELSE
3964 : {
3965 : DO
3966 : {
3967 8 : mmax = 0;
3968 8 : move16();
3969 8 : pt4 = pulses;
3970 88 : FOR( k = 0; k < nb_pulses; k++ )
3971 : {
3972 80 : tmp = *pt4++;
3973 80 : move16();
3974 80 : if ( GT_16( Tf_abs[tmp], mmax ) )
3975 : {
3976 16 : indmax = tmp;
3977 16 : move16();
3978 : }
3979 80 : mmax = s_max( Tf_abs[tmp], mmax );
3980 : }
3981 :
3982 8 : cumsum = L_mac0( cumsum, mmax, 1 ); // Qin
3983 :
3984 8 : *pt1++ = Tfr[indmax];
3985 8 : move16(); /*L_shr(Tfr[indmax], sN); //instead shr -> scaling of a_re is Qin+sN */
3986 8 : *pt2++ = Tfi[indmax];
3987 8 : move16(); /*L_shr(Tfi[indmax], sN); //instead shr -> scaling of a_im is Qin+sN */
3988 8 : *pt3++ = indmax;
3989 8 : move16();
3990 8 : Tf_abs[indmax] = -1;
3991 8 : move16();
3992 :
3993 8 : maxi = sub( maxi, 1 );
3994 : }
3995 8 : WHILE( maxi > 0 && LT_32( cumsum, L_tmp ) );
3996 :
3997 1 : nb_pulses_final = sub( nb_pulses_final, maxi );
3998 1 : move16();
3999 : }
4000 :
4001 :
4002 : /* sinusoidal synthesis */
4003 :
4004 :
4005 1 : set32_fx( synthesis_fx, 0, Len );
4006 :
4007 1 : exp = add( exp, sN );
4008 :
4009 :
4010 1 : pt1 = a_re;
4011 1 : pt2 = a_im;
4012 1 : pt3 = freqi;
4013 1 : q = shr_r( N, 2 );
4014 1 : if ( GT_16( N, shl( q, 2 ) ) )
4015 : {
4016 0 : q = add( q, 1 );
4017 : }
4018 :
4019 1 : inv_den = i_mult2( N, decimate_factor ); /*Q0 */
4020 :
4021 : /*tmp = div_s(12868,inv_den);*/ /*Q15 */
4022 :
4023 :
4024 9 : FOR( i = 0; i < nb_pulses_final; i++ )
4025 : {
4026 :
4027 8 : tmp = div_s( shl( *pt3, 1 ), inv_den ); /*Q15 */ /* ind*2/(N*decim) */
4028 8 : freq = L_shl( L_mult( tmp, 25736 ), 1 ); /*Q30 */ /* ind*2/(N*decim)*pi/4*4 never greater than PI/2 */
4029 8 : sin_cos_est_fx( freq, &cosfreq, &sinfreq ); /*cosfreq & sinfreq in Q15 */
4030 8 : singenerator_fx( Len, cosfreq, sinfreq, *pt1, *pt2, synthesis_fx ); /*Qin */
4031 :
4032 8 : pt1++;
4033 8 : pt2++;
4034 8 : pt3++;
4035 : }
4036 1 : Copy_Scale_sig_32_16( synthesis_fx, synthesis, Len, negate( add( exp, 16 ) ) ); /*Qin */
4037 :
4038 :
4039 1 : return;
4040 : }
4041 :
4042 1 : static void ivas_fec_noise_filling_fx(
4043 : const Word16 *prevsynth_fx, /*Qsynth */
4044 : Word16 *synthesis_fx, /*Qsynth */
4045 : Word16 *ni_seed_forfec,
4046 : const Word16 L,
4047 : const Word16 N,
4048 : const Word16 HqVoicing,
4049 : Word16 *gapsynth_fx, /*Qsynth */
4050 : const Word16 element_mode, /* i : IVAS element mode */
4051 : const Word16 *old_out,
4052 : const Word16 Q_old_out )
4053 : {
4054 :
4055 : Word16 Rnd_N_noise;
4056 : Word16 k, kk, i;
4057 : Word16 N_noise;
4058 :
4059 : Word16 tmp_fx, ind, q1, q2, L20, flag;
4060 : Word16 noisevect_fx[34 * L_FRAME48k / 20], SS_fx[L_FRAME48k / 2];
4061 : Word16 *pt1, *pt2, *pt3, *pt4, *pt5;
4062 : const Word16 *pt6;
4063 : Word32 L_tmp;
4064 : const Word16 *sinq_tab;
4065 :
4066 : const Word16 *p_mdct_ola;
4067 : Word16 alignment_point;
4068 1 : L20 = extract_h( L_mult( 1639, L ) ); /*L/20 */
4069 1 : IF( element_mode == EVS_MONO )
4070 : {
4071 0 : alignment_point = sub( shl( L, 1 ), i_mult2( 3, L20 ) );
4072 : }
4073 : ELSE
4074 : {
4075 1 : alignment_point = shl( L, 1 );
4076 : }
4077 :
4078 1 : IF( EQ_16( L, L_FRAME32k ) )
4079 : {
4080 1 : sinq_tab = sinq_32k;
4081 : }
4082 0 : ELSE IF( EQ_16( L, L_FRAME48k ) )
4083 : {
4084 0 : sinq_tab = sinq_48k;
4085 : }
4086 : ELSE
4087 : {
4088 0 : sinq_tab = sinq_16k;
4089 : }
4090 :
4091 1 : Copy( prevsynth_fx + sub( alignment_point, N ), noisevect_fx, N );
4092 :
4093 : /* Noise addition on full band */
4094 : /* residual */
4095 :
4096 1 : tmp_fx = s_min( N, L );
4097 1 : N_noise = shr( tmp_fx, 1 );
4098 1 : ind = sub( N, tmp_fx );
4099 1 : pt1 = noisevect_fx;
4100 1 : pt2 = pt1 + ind;
4101 1 : move16();
4102 1 : pt3 = &synthesis_fx[ind];
4103 1 : move16();
4104 217 : FOR( k = 0; k < tmp_fx; k++ )
4105 : {
4106 216 : ( *pt1++ ) = sub_sat( ( *pt2++ ), ( *pt3++ ) );
4107 216 : move16();
4108 : }
4109 :
4110 1 : IF( HqVoicing )
4111 : {
4112 0 : Scale_sig( noisevect_fx, N, -2 );
4113 : }
4114 :
4115 1 : kk = 0;
4116 1 : move16();
4117 1 : k = 0;
4118 1 : move16();
4119 1 : Rnd_N_noise = N_noise;
4120 1 : move16();
4121 :
4122 1 : ind = shl( L, 1 );
4123 1 : flag = ind;
4124 1 : move16();
4125 1 : pt5 = synthesis_fx;
4126 21 : WHILE( flag > 0 )
4127 : {
4128 20 : tmp_fx = Random( ni_seed_forfec );
4129 :
4130 20 : L_tmp = L_mac( 1503264768, tmp_fx, 9830 );
4131 20 : IF( EQ_16( kk, 0 ) )
4132 : {
4133 10 : L_tmp = L_mac( 1073741824, tmp_fx, 6554 );
4134 : }
4135 :
4136 20 : kk = sub( 1, kk );
4137 20 : tmp_fx = round_fx( L_tmp );
4138 20 : Rnd_N_noise = extract_h( L_mult( N_noise, tmp_fx ) ); /*Q0 */
4139 :
4140 :
4141 20 : tmp_fx = div_s( 1, Rnd_N_noise ); /*Q15 */
4142 20 : tmp_fx = round_fx( L_shl( L_mult( tmp_fx, 25736 ), 2 ) ); /*Q15 */
4143 :
4144 20 : sinq_fx( shr( tmp_fx, 1 ), shr( tmp_fx, 2 ), Rnd_N_noise, SS_fx );
4145 :
4146 20 : pt2 = &noisevect_fx[N_noise];
4147 20 : pt1 = pt2 - Rnd_N_noise;
4148 20 : pt3 = SS_fx;
4149 20 : pt4 = pt3 + sub( Rnd_N_noise, 1 );
4150 20 : tmp_fx = s_min( Rnd_N_noise, flag );
4151 1300 : FOR( i = 0; i < tmp_fx; i++ )
4152 : {
4153 1280 : L_tmp = L_mult( ( *pt1++ ), ( *pt3++ ) ); /*Qsynth+16 */
4154 1280 : L_tmp = L_mac_sat( L_tmp, ( *pt2++ ), ( *pt4-- ) ); /*Qsynth+16 */
4155 1280 : *pt5 = add_sat( *pt5, round_fx_sat( L_tmp ) );
4156 1280 : move16(); /*Qsynth */
4157 1280 : pt5++;
4158 : }
4159 20 : flag = sub( flag, tmp_fx );
4160 : }
4161 :
4162 1 : IF( element_mode == EVS_MONO )
4163 : {
4164 0 : kk = i_mult2( 7, L20 );
4165 0 : tmp_fx = i_mult2( 37, L20 );
4166 0 : p_mdct_ola = prevsynth_fx + tmp_fx;
4167 : }
4168 : ELSE
4169 : {
4170 1 : kk = NS2SA_FX2( L_mult0( L, FRAMES_PER_SEC ), N_ZERO_MDCT_NS );
4171 1 : p_mdct_ola = old_out + kk;
4172 : }
4173 :
4174 : /* overlappadd with the ms of valid mdct of the last frame */
4175 1 : tmp_fx = i_mult2( 3, L20 );
4176 1 : pt1 = &synthesis_fx[0];
4177 1 : pt6 = &p_mdct_ola[0];
4178 97 : FOR( k = 0; k < tmp_fx; k++ )
4179 : {
4180 96 : L_tmp = L_mult( *sinq_tab, *sinq_tab ); /*Q31 */
4181 96 : sinq_tab++;
4182 96 : q2 = round_fx( L_sub( 2147483647, L_tmp ) ); /*Q15 */
4183 96 : q1 = round_fx( L_tmp ); /*Q15 */
4184 96 : L_tmp = L_mult( ( *pt1 ), q1 ); /*Qsynth+16 */
4185 96 : L_tmp = L_add_sat( L_tmp, L_shr_sat( Mpy_32_16_1( L_deposit_h( *pt6++ ), q2 ), Q_old_out ) ); /*Qsynth+16 */
4186 96 : ( *pt1++ ) = round_fx_sat( L_tmp ); /*Qsynth */
4187 96 : move16();
4188 : }
4189 :
4190 1 : Copy( synthesis_fx, synthesis_fx + kk, sub( 2 * L, kk ) );
4191 1 : Copy( synthesis_fx + L, gapsynth_fx, L );
4192 1 : Copy( prevsynth_fx + sub( alignment_point, kk ), synthesis_fx, kk );
4193 1 : }
4194 :
4195 0 : static void fec_noise_filling_fx(
4196 : const Word16 *prevsynth_fx, /*Qsynth */
4197 : Word16 *synthesis_fx, /*Qsynth */
4198 : Word16 *ni_seed_forfec,
4199 : const Word16 L,
4200 : const Word16 N,
4201 : const Word16 HqVoicing,
4202 : Word16 *gapsynth_fx /*Qsynth */
4203 : )
4204 : {
4205 :
4206 : Word16 Rnd_N_noise;
4207 : Word16 k, kk, i;
4208 : Word16 N_noise;
4209 :
4210 : Word16 tmp_fx, ind, q1, q2, L20, flag;
4211 : Word16 noisevect_fx[34 * L_FRAME48k / 20], SS_fx[L_FRAME48k / 2];
4212 : Word16 *pt1, *pt2, *pt3, *pt4, *pt5;
4213 : const Word16 *pt6;
4214 : Word32 L_tmp;
4215 : const Word16 *sinq_tab;
4216 :
4217 0 : IF( EQ_16( L, L_FRAME32k ) )
4218 : {
4219 0 : sinq_tab = sinq_32k;
4220 : }
4221 0 : ELSE IF( EQ_16( L, L_FRAME48k ) )
4222 : {
4223 0 : sinq_tab = sinq_48k;
4224 : }
4225 : ELSE
4226 : {
4227 0 : sinq_tab = sinq_16k;
4228 : }
4229 :
4230 0 : L20 = extract_h( L_mult( 1639, L ) ); /*L/20 */
4231 :
4232 : /*N=47*L/20-delay_ind*decimatefator-6*L/20; */
4233 :
4234 0 : tmp_fx = sub( sub( shl( L, 1 ), i_mult2( 3, L20 ) ), N );
4235 0 : Copy( prevsynth_fx + tmp_fx, noisevect_fx, N );
4236 :
4237 : /* Noise addition on full band */
4238 : /* residual */
4239 :
4240 0 : tmp_fx = s_min( N, L );
4241 0 : N_noise = shr( tmp_fx, 1 );
4242 0 : ind = sub( N, tmp_fx );
4243 0 : pt1 = noisevect_fx;
4244 0 : pt2 = pt1 + ind;
4245 0 : move16();
4246 0 : pt3 = &synthesis_fx[ind];
4247 0 : move16();
4248 0 : FOR( k = 0; k < tmp_fx; k++ )
4249 : {
4250 0 : ( *pt1++ ) = sub_sat( ( *pt2++ ), ( *pt3++ ) );
4251 0 : move16();
4252 : }
4253 :
4254 0 : IF( HqVoicing )
4255 : {
4256 0 : Scale_sig( noisevect_fx, N, -2 );
4257 : }
4258 :
4259 0 : kk = 0;
4260 0 : move16();
4261 0 : k = 0;
4262 0 : move16();
4263 0 : Rnd_N_noise = N_noise;
4264 0 : move16();
4265 :
4266 0 : ind = shl( L, 1 );
4267 0 : flag = ind;
4268 0 : move16();
4269 0 : pt5 = synthesis_fx;
4270 0 : WHILE( flag > 0 )
4271 : {
4272 0 : tmp_fx = Random( ni_seed_forfec );
4273 :
4274 0 : L_tmp = L_mac( 1503264768, tmp_fx, 9830 );
4275 0 : if ( kk == 0 )
4276 : {
4277 0 : L_tmp = L_mac( 1073741824, tmp_fx, 6554 );
4278 : }
4279 :
4280 0 : kk = sub( 1, kk );
4281 0 : tmp_fx = round_fx( L_tmp );
4282 0 : Rnd_N_noise = extract_h( L_mult( N_noise, tmp_fx ) ); /*Q0 */
4283 :
4284 :
4285 0 : tmp_fx = div_s( 1, Rnd_N_noise ); /*Q15 */
4286 0 : tmp_fx = round_fx_sat( L_shl_sat( L_mult( tmp_fx, 25736 ), 2 ) ); /*Q15 */
4287 :
4288 0 : sinq_fx( shr( tmp_fx, 1 ), shr( tmp_fx, 2 ), Rnd_N_noise, SS_fx );
4289 :
4290 0 : pt2 = &noisevect_fx[N_noise];
4291 0 : pt1 = pt2 - Rnd_N_noise;
4292 0 : pt3 = SS_fx;
4293 0 : pt4 = pt3 + sub( Rnd_N_noise, 1 );
4294 0 : tmp_fx = s_min( Rnd_N_noise, flag );
4295 0 : FOR( i = 0; i < tmp_fx; i++ )
4296 : {
4297 0 : L_tmp = L_mult( ( *pt1++ ), ( *pt3++ ) ); /*Qsynth+16 */
4298 0 : L_tmp = L_mac_sat( L_tmp, ( *pt2++ ), ( *pt4-- ) ); /*Qsynth+16 */
4299 0 : *pt5 = add_sat( *pt5, round_fx_sat( L_tmp ) );
4300 0 : move16(); /*Qsynth */
4301 0 : pt5++;
4302 : }
4303 0 : flag = sub( flag, tmp_fx );
4304 : }
4305 :
4306 0 : q1 = i_mult2( 7, L20 );
4307 0 : q2 = i_mult2( 33, L20 );
4308 :
4309 0 : Copy( synthesis_fx, synthesis_fx + q1, q2 );
4310 0 : Copy( synthesis_fx + L, gapsynth_fx, L );
4311 0 : Copy( prevsynth_fx + sub( i_mult2( 37, L20 ), q1 ), synthesis_fx, q1 );
4312 0 : pt1 = &synthesis_fx[q1];
4313 0 : q2 = i_mult2( 37, L20 );
4314 0 : pt6 = &prevsynth_fx[q2];
4315 0 : tmp_fx = i_mult2( 3, L20 );
4316 :
4317 : /* overlappadd with the ms of valid mdct of the last frame */
4318 0 : FOR( k = 0; k < tmp_fx; k++ )
4319 : {
4320 0 : L_tmp = L_mult( *sinq_tab, *sinq_tab ); /*Q30 */
4321 0 : sinq_tab++;
4322 0 : q2 = round_fx( L_sub( 2147483647, L_tmp ) ); /*Q15 */
4323 0 : q1 = round_fx( L_tmp ); /*Q15 */
4324 0 : L_tmp = L_mult( ( *pt1 ), q1 ); /*Qsynth+16 */
4325 0 : L_tmp = L_mac( L_tmp, ( *pt6++ ), q2 ); /*Qsynth+16 */
4326 0 : ( *pt1++ ) = round_fx( L_tmp ); /*Qsynth */
4327 0 : move16();
4328 : }
4329 0 : }
4330 :
4331 1 : static void ivas_fec_alg_fx(
4332 : const Word16 *prevsynth, /*Qin */
4333 : const Word16 *prevsynth_LP, /*Qin */
4334 : Word16 *ni_seed_forfec,
4335 : Word32 *ecu_rec, /*Qin+16 (Qin+15 to be coherent witch other scaling) */
4336 : const Word16 output_frame,
4337 : const Word16 N,
4338 : const Word16 decimatefactor,
4339 : const Word16 HqVoicing,
4340 : Word16 *gapsynth, /*Qin */
4341 : const Word16 element_mode, /* i : IVAS element mode */
4342 : const Word16 *old_out,
4343 : const Word16 Q_old_out )
4344 : {
4345 : Word16 Nfft;
4346 : Word32 sum_Tf_abs;
4347 : Word16 Tfr[FEC_FFT_MAX_SIZE];
4348 : Word16 Tfi[FEC_FFT_MAX_SIZE];
4349 : Word16 Tf_abs[FEC_FFT_MAX_SIZE / 2];
4350 : Word16 synthesis[2 * L_FRAME48k];
4351 : Word16 exp;
4352 : Word16 n, Q;
4353 :
4354 1 : ivas_fec_ecu_dft_fx( prevsynth_LP, N, Tfr, Tfi, &sum_Tf_abs, Tf_abs, &Nfft, &exp, element_mode );
4355 :
4356 1 : sinusoidal_synthesis_fx( Tfr, Tfi, Tf_abs, N, output_frame, decimatefactor, Nfft, sum_Tf_abs, synthesis, HqVoicing, exp );
4357 :
4358 1 : ivas_fec_noise_filling_fx( prevsynth, synthesis, ni_seed_forfec, output_frame, i_mult2( N, decimatefactor ), HqVoicing, gapsynth, element_mode, old_out, Q_old_out );
4359 :
4360 1 : n = R1_48 - R2_48;
4361 1 : move16();
4362 :
4363 1 : test();
4364 1 : IF( EQ_16( output_frame, L_FRAME32k ) || EQ_16( output_frame, L_FRAME16k ) )
4365 : {
4366 1 : n = R1_16 - R2_16;
4367 1 : move16();
4368 :
4369 1 : if ( EQ_16( output_frame, L_FRAME32k ) )
4370 : {
4371 1 : n = 2 * N16_CORE_SW;
4372 1 : move16();
4373 : }
4374 : }
4375 1 : Q = 0;
4376 1 : move16();
4377 1 : wtda_fx( synthesis + sub( output_frame, n ), &Q, ecu_rec,
4378 : NULL,
4379 : NULL, ALDO_WINDOW, ALDO_WINDOW, output_frame ); /* return Q15 */
4380 :
4381 1 : return;
4382 : }
4383 :
4384 0 : static void fec_alg_fx(
4385 : const Word16 *prevsynth, /*Qin */
4386 : const Word16 *prevsynth_LP, /*Qin */
4387 : Word16 *ni_seed_forfec,
4388 : Word32 *ecu_rec, /*Qin+16 (Qin+15 to be coherent witch other scaling) */
4389 : const Word16 output_frame,
4390 : const Word16 N,
4391 : const Word16 decimatefactor,
4392 : const Word16 HqVoicing,
4393 : Word16 *gapsynth /*Qin */
4394 : )
4395 : {
4396 : Word16 Nfft;
4397 : Word32 sum_Tf_abs;
4398 : Word16 Tfr[FEC_FFT_MAX_SIZE];
4399 : Word16 Tfi[FEC_FFT_MAX_SIZE];
4400 : Word16 Tf_abs[FEC_FFT_MAX_SIZE / 2];
4401 : Word16 synthesis[2 * L_FRAME48k];
4402 : Word16 exp;
4403 : Word16 n, Q;
4404 :
4405 0 : fec_ecu_dft_fx( prevsynth_LP, N, Tfr, Tfi, &sum_Tf_abs, Tf_abs, &Nfft, &exp );
4406 :
4407 0 : sinusoidal_synthesis_fx( Tfr, Tfi, Tf_abs, N, output_frame, decimatefactor, Nfft, sum_Tf_abs, synthesis, HqVoicing, exp );
4408 :
4409 0 : fec_noise_filling_fx( prevsynth, synthesis, ni_seed_forfec, output_frame, i_mult2( N, decimatefactor ), HqVoicing, gapsynth );
4410 :
4411 0 : n = R1_48 - R2_48;
4412 0 : move16();
4413 :
4414 0 : test();
4415 0 : IF( EQ_16( output_frame, L_FRAME32k ) || EQ_16( output_frame, L_FRAME16k ) )
4416 : {
4417 0 : n = R1_16 - R2_16;
4418 0 : move16();
4419 :
4420 0 : if ( EQ_16( output_frame, L_FRAME32k ) )
4421 : {
4422 0 : n = 2 * N16_CORE_SW;
4423 0 : move16();
4424 : }
4425 : }
4426 0 : Q = 0;
4427 0 : move16();
4428 0 : wtda_fx( synthesis + sub( output_frame, n ), &Q, ecu_rec,
4429 : NULL,
4430 : NULL, ALDO_WINDOW, ALDO_WINDOW, output_frame ); /* return Q15 */
4431 :
4432 0 : return;
4433 : }
4434 :
4435 : /*--------------------------------------------------------------------------
4436 : * hq_phase_ecu_fx()
4437 : *
4438 : * Main routine for HQ phase ECU
4439 : *--------------------------------------------------------------------------*/
4440 :
4441 220 : static void ivas_hq_phase_ecu_fx(
4442 : const Word16 *prevsynth, /* i : buffer of previously synthesized signal Q0 */
4443 : Word32 *ecu_rec, /* o : reconstructed frame in tda domain */
4444 : Word16 *time_offs, /* i/o: Sample offset for consecutive frame losses Q0*/
4445 : Word16 *X_sav, /* i/o: Stored spectrum of prototype frame */
4446 : Word16 *Q_spec, /* i/o: Q value of stored spectrum */
4447 : Word16 *num_p, /* i/o: Number of identified peaks Q0 */
4448 : Word16 *plocs, /* i/o: Peak locations Q0 */
4449 : Word32 *plocsi, /* i/o: Interpolated peak locations Q16 */
4450 : const Word16 env_stab, /* i : Envelope stability parameter */
4451 : Word16 *last_fec, /* i/o: Flag for usage of pitch dependent ECU */
4452 : Word16 *ph_ecu_active, /* i : Phase ECU active flag */
4453 : const Word16 prev_bfi, /* i : indicating burst frame error */
4454 : const Word16 old_is_transient[2], /* i : flags indicating previous transient frames */
4455 : Word16 *mag_chg_1st, /* i/o: per band magnitude modifier for transients*/
4456 : Word16 *Xavg, /* i/o: Frequency group average gain to fade to Q0 */
4457 : Word16 *beta_mute, /* o : Factor for long-term mute Q15 */
4458 : const Word16 bwidth_fx, /* i : Encoded bandwidth */
4459 : const Word16 output_frame, /* i : frame length */
4460 : const Word16 pcorr,
4461 : const Word16 element_mode /* i : IVAS element mode */
4462 : )
4463 : {
4464 : Word16 lprot, offset;
4465 : Word16 mag_chg[LGW_MAX], ph_dith, X[L_PROT48k];
4466 : Word16 seed;
4467 : Word16 alpha[LGW_MAX], beta[LGW_MAX];
4468 :
4469 : const Word16 *old_dec;
4470 : Word16 noise_fac;
4471 : Word16 ph_ecu_lookahead;
4472 :
4473 220 : noise_fac = 32767; /* 1.0f in Q15 */
4474 220 : move16();
4475 :
4476 220 : IF( element_mode == EVS_MONO )
4477 : {
4478 0 : ph_ecu_lookahead = NS2SA_FX2( L_mult0( output_frame, FRAMES_PER_SEC ), PH_ECU_LOOKAHEAD_NS );
4479 0 : move16();
4480 : }
4481 : ELSE
4482 : {
4483 220 : ph_ecu_lookahead = 0;
4484 220 : move16();
4485 : }
4486 220 : IF( EQ_16( output_frame, L_FRAME48k ) )
4487 : {
4488 155 : lprot = L_PROT48k; /* 1536 = (2*output_frame)*1024/1280 */
4489 155 : move16();
4490 : }
4491 65 : ELSE IF( EQ_16( output_frame, L_FRAME32k ) )
4492 : {
4493 54 : lprot = L_PROT32k; /* 1024 */
4494 54 : move16();
4495 : }
4496 11 : ELSE IF( EQ_16( output_frame, L_FRAME16k ) )
4497 : {
4498 11 : lprot = 512;
4499 11 : move16();
4500 : }
4501 : ELSE
4502 : {
4503 0 : lprot = 256;
4504 0 : move16();
4505 : }
4506 :
4507 220 : test();
4508 220 : test();
4509 220 : test();
4510 220 : IF( prev_bfi == 0 || ( prev_bfi != 0 && *last_fec != 0 && ( EQ_16( *time_offs, output_frame ) ) ) )
4511 : {
4512 127 : test();
4513 127 : test();
4514 127 : if ( !( prev_bfi != 0 && *last_fec != 0 && element_mode == EVS_MONO ) )
4515 : {
4516 127 : *time_offs = 0; /* IVAS reset of offset time counter, timeoffset variable later also used to calculate burst length */
4517 127 : move16();
4518 : }
4519 :
4520 127 : offset = add( sub( sub( shl( output_frame, 1 ), lprot ), *time_offs ), ph_ecu_lookahead );
4521 :
4522 127 : trans_ana_fx( prevsynth + offset, mag_chg, &ph_dith, mag_chg_1st, output_frame, *time_offs, env_stab,
4523 127 : *last_fec, element_mode, alpha, beta, beta_mute, Xavg );
4524 :
4525 127 : ivas_spec_ana_fx( prevsynth + offset, plocs, plocsi, num_p, X_sav, output_frame, bwidth_fx, Q_spec, element_mode, &noise_fac, pcorr );
4526 :
4527 127 : test();
4528 127 : IF( prev_bfi != 0 && *last_fec != 0 )
4529 : {
4530 0 : *time_offs = add_sat( *time_offs, output_frame ); /* when saturation is reached, this keeps the long term muting on */
4531 0 : move16();
4532 : }
4533 : }
4534 : ELSE
4535 : {
4536 93 : *time_offs = add_sat( *time_offs, output_frame );
4537 93 : move16();
4538 93 : offset = sub( shl( output_frame, 1 ), lprot );
4539 :
4540 93 : trans_ana_fx( prevsynth + offset, mag_chg, &ph_dith, mag_chg_1st, output_frame, *time_offs, env_stab,
4541 : 0, element_mode, alpha, beta, beta_mute, Xavg );
4542 : }
4543 :
4544 220 : Copy( X_sav, X, lprot );
4545 :
4546 : /* seed for own_rand2 */
4547 220 : seed = *time_offs;
4548 220 : move16();
4549 220 : IF( *num_p > 0 )
4550 : {
4551 215 : seed = extract_l( L_add( L_deposit_l( seed ), L_deposit_l( plocs[*num_p - 1] ) ) );
4552 : }
4553 :
4554 220 : ivas_subst_spec_fx( plocs, plocsi, num_p, *time_offs, X, mag_chg, ph_dith, old_is_transient, output_frame, &seed,
4555 220 : alpha, beta, *beta_mute, Xavg, element_mode, ph_ecu_lookahead, noise_fac );
4556 :
4557 : /* reconstructed frame in tda domain */
4558 220 : old_dec = prevsynth + sub( shl( output_frame, 1 ), NS2SA_FX2( L_mult0( output_frame, FRAMES_PER_SEC ), N_ZERO_MDCT_NS ) );
4559 220 : ivas_rec_frame_fx( X, ecu_rec, output_frame, *Q_spec, old_dec, element_mode, num_p, plocs );
4560 :
4561 220 : *last_fec = 0;
4562 220 : move16();
4563 220 : *ph_ecu_active = 1;
4564 220 : move16();
4565 220 : }
4566 :
4567 0 : static void hq_phase_ecu_fx(
4568 : const Word16 *prevsynth, /* i : buffer of previously synthesized signal Q0 */
4569 : Word32 *ecu_rec, /* o : reconstructed frame in tda domain */
4570 : Word16 *time_offs, /* i/o: Sample offset for consecutive frame losses Q0*/
4571 : Word16 *X_sav, /* i/o: Stored spectrum of prototype frame */
4572 : Word16 *Q_spec, /* i/o: Q value of stored spectrum */
4573 : Word16 *num_p, /* i/o: Number of identified peaks Q0 */
4574 : Word16 *plocs, /* i/o: Peak locations Q0 */
4575 : Word32 *plocsi, /* i/o: Interpolated peak locations Q16 */
4576 : const Word16 env_stab, /* i : Envelope stability parameter */
4577 : Word16 *last_fec, /* i/o: Flag for usage of pitch dependent ECU */
4578 : Word16 *ph_ecu_active, /* i : Phase ECU active flag */
4579 : const Word16 prev_bfi, /* i : indicating burst frame error */
4580 : const Word16 old_is_transient[2], /* i : flags indicating previous transient frames */
4581 : Word16 *mag_chg_1st, /* i/o: per band magnitude modifier for transients*/
4582 : Word16 *Xavg, /* i/o: Frequency group average gain to fade to Q0 */
4583 : Word16 *beta_mute, /* o : Factor for long-term mute Q15 */
4584 : const Word16 bwidth_fx, /* i : Encoded bandwidth */
4585 : const Word16 output_frame /* i : frame length */
4586 : )
4587 : {
4588 : Word16 lprot, offset;
4589 : Word16 mag_chg[LGW_MAX], ph_dith, X[L_PROT48k];
4590 : Word16 seed;
4591 : Word16 alpha[LGW_MAX], beta[LGW_MAX];
4592 :
4593 0 : IF( EQ_16( output_frame, L_FRAME48k ) )
4594 : {
4595 0 : lprot = L_PROT48k; /* 1536 = (2*output_frame)*1024/1280 */
4596 0 : move16();
4597 : }
4598 0 : ELSE IF( EQ_16( output_frame, L_FRAME32k ) )
4599 : {
4600 0 : lprot = L_PROT32k; /* 1024 */
4601 0 : move16();
4602 : }
4603 0 : ELSE IF( output_frame == L_FRAME16k )
4604 : {
4605 0 : lprot = 512;
4606 0 : move16();
4607 : }
4608 : ELSE
4609 : {
4610 0 : lprot = 256;
4611 0 : move16();
4612 : }
4613 :
4614 0 : test();
4615 0 : test();
4616 0 : test();
4617 0 : IF( prev_bfi == 0 || ( prev_bfi != 0 && *last_fec != 0 && ( EQ_16( *time_offs, output_frame ) ) ) )
4618 : {
4619 0 : test();
4620 0 : if ( !( prev_bfi != 0 && *last_fec != 0 ) )
4621 : {
4622 0 : *time_offs = 0;
4623 0 : move16();
4624 : }
4625 :
4626 0 : offset = sub( sub( shl( output_frame, 1 ), lprot ), *time_offs );
4627 :
4628 0 : trans_ana_fx( prevsynth + offset, mag_chg, &ph_dith, mag_chg_1st, output_frame, *time_offs, env_stab,
4629 0 : *last_fec, EVS_MONO, alpha, beta, beta_mute, Xavg );
4630 :
4631 0 : spec_ana_fx( prevsynth + offset, plocs, plocsi, num_p, X_sav, output_frame, bwidth_fx, Q_spec );
4632 :
4633 0 : test();
4634 0 : IF( prev_bfi != 0 && *last_fec != 0 )
4635 : {
4636 0 : *time_offs = add_sat( *time_offs, output_frame );
4637 0 : move16();
4638 : }
4639 : }
4640 : ELSE
4641 : {
4642 0 : *time_offs = add_sat( *time_offs, output_frame );
4643 0 : move16();
4644 :
4645 0 : offset = sub( shl( output_frame, 1 ), lprot );
4646 :
4647 0 : trans_ana_fx( prevsynth + offset, mag_chg, &ph_dith, mag_chg_1st, output_frame, *time_offs, env_stab,
4648 : 0, EVS_MONO, alpha, beta, beta_mute, Xavg );
4649 : }
4650 :
4651 0 : Copy( X_sav, X, lprot );
4652 :
4653 : /* seed for own_rand2 */
4654 0 : seed = *time_offs;
4655 0 : move16();
4656 0 : IF( *num_p > 0 )
4657 : {
4658 0 : seed = add_sat( seed, plocs[*num_p - 1] );
4659 : }
4660 :
4661 0 : subst_spec_fx( plocs, plocsi, num_p, *time_offs, X, mag_chg, ph_dith, old_is_transient, output_frame, &seed,
4662 0 : alpha, beta, *beta_mute, Xavg );
4663 :
4664 : /* reconstructed frame in tda domain */
4665 0 : rec_frame_fx( X, ecu_rec, output_frame, *Q_spec );
4666 :
4667 0 : *last_fec = 0;
4668 0 : move16();
4669 0 : *ph_ecu_active = 1;
4670 0 : move16();
4671 0 : }
4672 :
4673 :
4674 : /*--------------------------------------------------------------------------
4675 : * hq_ecu()
4676 : *
4677 : * Main routine for HQ ECU
4678 : *--------------------------------------------------------------------------*/
4679 :
4680 221 : void ivas_hq_ecu_fx(
4681 : const Word16 *prevsynth, /* i : buffer of previously synthesized signal Q0 */
4682 : Word32 *ecu_rec, /* o : reconstructed frame in tda domain */
4683 : Word16 *time_offs, /* i/o: Sample offset for consecutive frame losses Q0 */
4684 : Word16 *X_sav, /* i/o: Stored spectrum of prototype frame */
4685 : Word16 *Q_spec, /* i/o: Q value of stored spectrum */
4686 : Word16 *num_p, /* i/o: Number of identified peaks Q0 */
4687 : Word16 *plocs, /* i/o: Peak locations Q0 */
4688 : Word32 *plocsi, /* i/o: Interpolated peak locations Q16 */
4689 : const Word16 env_stab, /* i : Envelope stability parameter */
4690 : Word16 *last_fec, /* i/o: Flag for usage of pitch dependent ECU */
4691 : const Word16 ph_ecu_HqVoicing, /* i : HQ Voicing flag */
4692 : Word16 *ph_ecu_active, /* i : Phase ECU active flag */
4693 : Word16 *gapsynth, /* o : Gap synthesis */
4694 : const Word16 prev_bfi, /* i : indicating burst frame error */
4695 : const Word16 old_is_transient[2], /* i : flags indicating previous transient frames */
4696 : Word16 *mag_chg_1st, /* i/o: per band magnitude modifier for transients */
4697 : Word16 *Xavg, /* i/o: Frequency group average gain to fade to Q0 */
4698 : Word16 *beta_mute, /* o : Factor for long-term mute Q15 */
4699 : const Word16 output_frame, /* i : frame length */
4700 : Decoder_State *st_fx /* i/o: decoder state structure */
4701 : )
4702 : {
4703 : Word16 N;
4704 : Word16 decimatefactor;
4705 : Word16 corr; /*Q15 */
4706 : Word16 prevsynth_LP[2 * L_FRAME8k];
4707 : HQ_DEC_HANDLE hHQ_core;
4708 : const Word16 *fec_alg_input;
4709 : Word16 evs_mode_selection;
4710 : Word16 ivas_mode_selection;
4711 :
4712 221 : hHQ_core = st_fx->hHQ_core;
4713 221 : corr = 0;
4714 221 : move16();
4715 221 : IF( EQ_16( st_fx->element_mode, EVS_MONO ) )
4716 : {
4717 0 : fec_alg_input = prevsynth + NS2SA_FX2( L_mult0( output_frame, FRAMES_PER_SEC ), ACELP_LOOK_NS / 2 - PH_ECU_LOOKAHEAD_NS );
4718 : }
4719 : ELSE
4720 : {
4721 221 : fec_alg_input = prevsynth - NS2SA_FX2( L_mult0( output_frame, FRAMES_PER_SEC ), PH_ECU_LOOKAHEAD_NS );
4722 : }
4723 : /* init (values ar changed after) */
4724 :
4725 :
4726 : /* find pitch and R value */
4727 :
4728 221 : IF( !( LT_16( output_frame, L_FRAME16k ) ) )
4729 : {
4730 221 : fec_ecu_pitch_ivas_fx( fec_alg_input, prevsynth_LP, output_frame, &N, &corr, &decimatefactor, ph_ecu_HqVoicing );
4731 : }
4732 : ELSE
4733 : {
4734 0 : corr = 0;
4735 0 : decimatefactor = 4;
4736 0 : move16();
4737 0 : N = shr( output_frame, 2 );
4738 0 : move16(); /* just to avoid using uninitialized value in if statement below */
4739 : }
4740 :
4741 221 : test();
4742 221 : test();
4743 221 : test();
4744 221 : test();
4745 221 : test();
4746 221 : test();
4747 221 : test();
4748 221 : test();
4749 221 : test();
4750 221 : test();
4751 221 : test();
4752 221 : test();
4753 221 : test();
4754 221 : test();
4755 221 : test();
4756 :
4757 222 : evs_mode_selection = ( GE_32( st_fx->total_brate, 48000 ) && ( GE_16( output_frame, L_FRAME16k ) && !prev_bfi && ( !old_is_transient[0] || old_is_transient[1] ) &&
4758 663 : ( ph_ecu_HqVoicing || ( ( ( GT_16( hHQ_core->env_stab_plc_fx, 16384 ) /* 0.5 in Q15 */ ) && ( LT_16( corr, 19661 ) /* 0.6 in Q15 */ ) ) || ( LT_16( hHQ_core->env_stab_plc_fx, 16384 ) /* 0.5 in Q15 */ && ( GT_16( corr, 27853 ) /* 0.85 in Q15 */ ) ) ) ) ) ) ||
4759 441 : ( LT_32( st_fx->total_brate, 48000 ) && ( ( ph_ecu_HqVoicing || GT_16( corr, 27853 ) /* 0.85 in Q15 */ ) && !prev_bfi && ( !old_is_transient[0] || old_is_transient[1] ) ) );
4760 :
4761 221 : test();
4762 221 : ivas_mode_selection = ( LT_16( N, PH_ECU_N_LIMIT ) ) || ( LT_16( corr, PH_ECU_CORR_LIMIT_Q15 ) );
4763 221 : test();
4764 221 : test();
4765 221 : test();
4766 221 : test();
4767 221 : IF( ( ( st_fx->element_mode == EVS_MONO ) && evs_mode_selection ) ||
4768 : ( ( st_fx->element_mode != EVS_MONO ) && evs_mode_selection && ivas_mode_selection ) )
4769 : {
4770 1 : ivas_fec_alg_fx( fec_alg_input, prevsynth_LP, &st_fx->hHQ_core->ni_seed_forfec, ecu_rec, output_frame, N, decimatefactor, ph_ecu_HqVoicing, gapsynth, st_fx->element_mode, st_fx->hHQ_core->old_out_fx, st_fx->hHQ_core->Q_old_wtda );
4771 1 : *last_fec = 1;
4772 1 : move16();
4773 1 : *ph_ecu_active = 0;
4774 1 : move16();
4775 1 : *time_offs = output_frame;
4776 1 : move16();
4777 : }
4778 : ELSE
4779 : {
4780 220 : ivas_hq_phase_ecu_fx( prevsynth - NS2SA_FX2( L_mult0( output_frame, FRAMES_PER_SEC ), PH_ECU_LOOKAHEAD_NS ), ecu_rec, time_offs, X_sav, Q_spec, num_p, plocs, plocsi,
4781 : env_stab, last_fec, ph_ecu_active, prev_bfi, old_is_transient,
4782 220 : mag_chg_1st, Xavg, beta_mute, st_fx->bwidth, output_frame, corr, st_fx->element_mode );
4783 :
4784 220 : *last_fec = 0;
4785 220 : move16();
4786 220 : *ph_ecu_active = 1;
4787 220 : move16();
4788 : }
4789 221 : return;
4790 : }
4791 :
4792 0 : void hq_ecu_fx(
4793 : const Word16 *prevsynth, /* i : buffer of previously synthesized signal Q0 */
4794 : Word32 *ecu_rec, /* o : reconstructed frame in tda domain */
4795 : Word16 *time_offs, /* i/o: Sample offset for consecutive frame losses Q0 */
4796 : Word16 *X_sav, /* i/o: Stored spectrum of prototype frame */
4797 : Word16 *Q_spec, /* i/o: Q value of stored spectrum */
4798 : Word16 *num_p, /* i/o: Number of identified peaks Q0 */
4799 : Word16 *plocs, /* i/o: Peak locations Q0 */
4800 : Word32 *plocsi, /* i/o: Interpolated peak locations Q16 */
4801 : const Word16 env_stab, /* i : Envelope stability parameter */
4802 : Word16 *last_fec, /* i/o: Flag for usage of pitch dependent ECU */
4803 : const Word16 ph_ecu_HqVoicing, /* i : HQ Voicing flag */
4804 : Word16 *ph_ecu_active, /* i : Phase ECU active flag */
4805 : Word16 *gapsynth, /* o : Gap synthesis */
4806 : const Word16 prev_bfi, /* i : indicating burst frame error */
4807 : const Word16 old_is_transient[2], /* i : flags indicating previous transient frames */
4808 : Word16 *mag_chg_1st, /* i/o: per band magnitude modifier for transients */
4809 : Word16 *Xavg, /* i/o: Frequency group average gain to fade to Q0 */
4810 : Word16 *beta_mute, /* o : Factor for long-term mute Q15 */
4811 : const Word16 output_frame, /* i : frame length */
4812 : Decoder_State *st_fx /* i/o: decoder state structure */
4813 : )
4814 : {
4815 : Word16 N;
4816 : Word16 decimatefactor;
4817 : Word16 corr; /*Q15 */
4818 : Word16 prevsynth_LP[2 * L_FRAME8k];
4819 : /* init (values ar changed after) */
4820 0 : decimatefactor = 4;
4821 0 : move16();
4822 0 : N = shr( output_frame, 2 );
4823 :
4824 :
4825 : /* find pitch and R value */
4826 :
4827 0 : IF( !( LT_16( output_frame, L_FRAME16k ) ) )
4828 : {
4829 0 : fec_ecu_pitch_fx( prevsynth + NS2SA_FX2( L_mult0( output_frame, 50 ), ACELP_LOOK_NS / 2 - PH_ECU_LOOKAHEAD_NS ), prevsynth_LP, output_frame, &N, &corr, &decimatefactor, ph_ecu_HqVoicing );
4830 : }
4831 : ELSE
4832 : {
4833 0 : corr = 0;
4834 0 : move16(); /* just to avoid using uninitialized value in if statement below */
4835 : }
4836 :
4837 0 : test();
4838 0 : test();
4839 0 : test();
4840 0 : test();
4841 0 : test();
4842 0 : test();
4843 0 : test();
4844 0 : test();
4845 0 : test();
4846 0 : test();
4847 0 : test();
4848 0 : test();
4849 0 : test();
4850 0 : test();
4851 0 : test();
4852 0 : IF( ( GE_32( st_fx->total_brate, 48000 ) &&
4853 : ( GE_16( output_frame, L_FRAME16k ) && !prev_bfi && ( !old_is_transient[0] || old_is_transient[1] ) && ( NE_16( ph_ecu_HqVoicing, 0 ) || ( ( ( NE_16( st_fx->hHQ_core->env_stab_plc_fx, 0 ) ) && ( LT_16( corr, 19661 ) ) ) || ( !( NE_16( st_fx->hHQ_core->env_stab_plc_fx, 0 ) ) && ( GT_16( corr, 27853 ) ) ) ) ) ) ) ||
4854 : ( LT_32( st_fx->total_brate, 48000 ) && ( ( ph_ecu_HqVoicing || GT_16( corr, 27853 ) ) && !prev_bfi && ( !old_is_transient[0] || old_is_transient[1] ) ) ) )
4855 : {
4856 :
4857 0 : fec_alg_fx( prevsynth + NS2SA_FX2( L_mult0( output_frame, 50 ), ACELP_LOOK_NS / 2 - PH_ECU_LOOKAHEAD_NS ), prevsynth_LP, &st_fx->hHQ_core->ni_seed_forfec, ecu_rec, output_frame, N, decimatefactor, ph_ecu_HqVoicing, gapsynth );
4858 0 : *last_fec = 1;
4859 0 : move16();
4860 0 : *ph_ecu_active = 0;
4861 0 : move16();
4862 0 : *time_offs = output_frame;
4863 0 : move16();
4864 : }
4865 : ELSE
4866 : {
4867 0 : hq_phase_ecu_fx( prevsynth, ecu_rec, time_offs, X_sav, Q_spec, num_p, plocs, plocsi,
4868 : env_stab, last_fec, ph_ecu_active, prev_bfi, old_is_transient,
4869 0 : mag_chg_1st, Xavg, beta_mute, st_fx->bwidth, output_frame );
4870 : }
4871 0 : return;
4872 : }
4873 :
4874 : /*******************************************************************************
4875 : * The square root of x which MUST be 0.5 <= x < 1, i.e., x must be normalized.
4876 : * sqrt(x) is approximated by a polynomial of degree n.
4877 : *
4878 : * sqrt(x) = a0 x^n + a1 x^(n-1) + a2 x^(n-2) + ... + an
4879 : * = (...((a0 x + a1) x + a2) x + ...) x + an
4880 : *
4881 : * The coefficients can be readily obtained by the following open source Octave
4882 : * (or commercial Matlab) script:
4883 : * order = 2;
4884 : * N = 400;
4885 : * x = linspace(0.5, 1.0, N);
4886 : * y = sqrt(x);
4887 : * p = polyfit(x, y, order)
4888 : * z = polyval(p, x);
4889 : * err = y - z;
4890 : * plot(err);
4891 : ******************************************************************************/
4892 :
4893 66912 : static Word16 sqrt2ndOrder( /* o: in Q15 (2nd order least square approx.) */
4894 : const Word16 x /* i: x must be in between 0.5 and 1.0 (Q15). */
4895 : )
4896 : {
4897 : Word32 acc;
4898 : Word16 z;
4899 :
4900 66912 : acc = 1890205600L; /* 0.880195572812922 in Q31 */
4901 66912 : move32();
4902 66912 : z = mac_r( acc, x, -6506 ); /* -0.198537395405340 in Q15 */
4903 66912 : acc = 682030261L; /* 0.317595089462249 in Q31 */
4904 66912 : move32();
4905 66912 : z = mac_r( acc, z, x ); /* in Q15 */
4906 66912 : return z;
4907 : }
4908 :
4909 : /*-----------------------------------------------------------------------------
4910 : * windowing()
4911 : *
4912 : * Apply a symmetric Hamming or Hamming-Rectangular window to the signal.
4913 : * If the "rectLength" parameter is zero, it is Hamming window; otherwise, the
4914 : * rectLength signifies the length of the rectangular part of the Hamming-Rectangular
4915 : * window.
4916 : *--------------------------------------------------------------------------- */
4917 254 : static void windowing(
4918 : const Word16 *x, /* i: Input signal Qx*/
4919 : Word16 *y, /* o: Windowed output Qx*/
4920 : const Word16 *win, /* i: Window coefficients Q15*/
4921 : const Word16 rectLength, /* i: Offset in between the 1st and 2nd symmetric halves of the Hamming window */
4922 : const Word16 halfLength /* i: Half of the total length of a complete Hamming window. */
4923 : )
4924 : {
4925 : Word16 i;
4926 : Word16 *pY;
4927 : const Word16 *pX, *pW;
4928 254 : pX = x;
4929 254 : pW = win;
4930 254 : pY = y;
4931 40190 : FOR( i = 0; i < halfLength; i++ ) /* 1st symmetric half of the Hamming window */
4932 : {
4933 39936 : *pY++ = mult_r( *pX++, *pW++ );
4934 39936 : move16();
4935 : }
4936 254 : FOR( i = 0; i < rectLength; i++ ) /* If rectLength is zero, it's a pure Hamming window; otherwise Hamming-Rectangular. */
4937 : {
4938 0 : *pY++ = *pX++;
4939 0 : move16();
4940 : }
4941 40190 : FOR( i = 0; i < halfLength; i++ ) /* 2nd symmetric half of the Hamming window. */
4942 : {
4943 39936 : *pY++ = mult_r( *pX++, *( --pW ) );
4944 39936 : move16();
4945 : }
4946 254 : }
4947 :
4948 : /*-----------------------------------------------------------------------------
4949 : * windowing_ROM_optimized()
4950 : *
4951 : * The coefficients of the Hamming window are derived from the sine table
4952 : * shared with fft3_fx().
4953 : * The entire Hamming-Rectangular window is decomposed into 5 segments:
4954 : * 1. 1st half of the left half of the Hamming window
4955 : * 2. 2nd half of the left half of the Hamming window
4956 : * 3. The flat part of the rectangular region
4957 : * 4. 1st half of the right half of the Hamming window
4958 : * 5. 2nd half of the right half of the Hamming window
4959 : *----------------------------------------------------------------------------*/
4960 0 : static void windowing_ROM_optimized(
4961 : const Word16 *x, /* i: Input signal Qin*/
4962 : Word16 *y, /* o: Windowed output Qin*/
4963 : const Word16 downSamples, /* i: Offset in accessing the sine table. */
4964 : const Word16 rectLength, /* i: Length of the rectangular portion (excluding the Hamming window part) */
4965 : const Word16 halfLength /* i: Half of the total length of the Hamming (excluding rectangular part) window */
4966 : )
4967 : {
4968 : Word16 i, hamm, quarterLen, initOffset;
4969 : Word16 *pY;
4970 : const Word16 *pX, *pSine;
4971 : Word32 acc;
4972 :
4973 0 : quarterLen = shr( halfLength, 1 ); /* 1/4 length of the entire Hamming (excluding the rectangular part) window. */
4974 0 : initOffset = add( T_SIN_PI_2, shr( downSamples, 1 ) );
4975 0 : pSine = sincos_t_rad3_fx + initOffset; // Q15
4976 0 : pX = x;
4977 0 : pY = y;
4978 :
4979 : /* 1st half of the left half of the Hamming window. */
4980 0 : FOR( i = 0; i < quarterLen; i++ )
4981 : {
4982 0 : pSine -= downSamples; /* Decrement address counter */
4983 0 : acc = L_deposit_h( FEC_HQ_WIN_A0 ); /* Derive the Hamming window coefficient from the sine table. Q31*/
4984 0 : hamm = msu_r( acc, *pSine, FEC_HQ_WIN_A1 ); // Q15
4985 0 : *pY++ = mult_r( hamm, *pX++ ); // Qin
4986 0 : move16();
4987 : }
4988 :
4989 : /* 2nd half of the left half of the Hamming window. */
4990 0 : FOR( i = 0; i < quarterLen; i++ )
4991 : {
4992 0 : acc = L_deposit_h( FEC_HQ_WIN_A0 );
4993 0 : hamm = mac_r_sat( acc, *pSine, FEC_HQ_WIN_A1 );
4994 0 : *pY++ = mult_r( hamm, *pX++ );
4995 0 : move16();
4996 0 : pSine += downSamples; /* Increment address counter */
4997 : }
4998 :
4999 : /* The rectangular flat region */
5000 0 : FOR( i = 0; i < rectLength; i++ )
5001 : {
5002 0 : *pY++ = *pX++;
5003 0 : move16();
5004 : }
5005 :
5006 : /* 1st half of the right half of the Hamming window. */
5007 0 : FOR( i = 0; i < quarterLen; i++ )
5008 : {
5009 0 : pSine -= downSamples; /* Decrement address counter */
5010 0 : acc = L_deposit_h( FEC_HQ_WIN_A0 ); // Q31
5011 0 : hamm = mac_r_sat( acc, *pSine, FEC_HQ_WIN_A1 ); // Q15
5012 0 : *pY++ = mult_r( hamm, *pX++ );
5013 0 : move16();
5014 : }
5015 :
5016 : /* 2nd half of the right half of the Hamming window. */
5017 0 : FOR( i = 0; i < quarterLen; i++ )
5018 : {
5019 0 : acc = L_deposit_h( FEC_HQ_WIN_A0 );
5020 0 : hamm = msu_r( acc, *pSine, FEC_HQ_WIN_A1 );
5021 0 : *pY++ = mult_r( hamm, *pX++ );
5022 0 : move16();
5023 0 : pSine += downSamples; /* Increment address counter */
5024 : }
5025 0 : }
|